Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2208513119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969780

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-ß-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-ß-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-ß-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-ß-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-ß-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-ß-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.


Assuntos
Neuroglia , Células de Purkinje , Ataxias Espinocerebelares , Via de Sinalização Wnt , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Peptídeos , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/patologia , beta Catenina/genética , beta Catenina/metabolismo
2.
Neurobiol Dis ; 195: 106492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575093

RESUMO

We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.


Assuntos
Modelos Animais de Doenças , Fenótipo , Animais , Camundongos , Cerebelo/patologia , Cerebelo/metabolismo , Células de Purkinje/patologia , Células de Purkinje/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Genótipo , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Camundongos Mutantes Neurológicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
FASEB J ; 37(5): e22886, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043392

RESUMO

Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.


Assuntos
Proteínas do Citoesqueleto , Neuropatia Axonal Gigante , Humanos , Proteínas do Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/metabolismo , Neuropatia Axonal Gigante/patologia , Microtúbulos/metabolismo
4.
Cerebellum ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165578

RESUMO

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

5.
Curr Neurol Neurosci Rep ; 24(3): 47-54, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38270820

RESUMO

PURPOSE OF REVIEW: Spinocerebellar ataxias (SCAs) are autosomal dominant degenerative syndromes that present with ataxia and brain stem abnormalities. This review describes the cognitive and behavioral symptoms of SCAs in the context of recent knowledge of the role of the cerebellum in higher intellectual function. RECENT FINDINGS: Recent studies suggest that patients with spinocerebellar ataxia can display cognitive deficits even early in the disease. These have been given the term cerebellar cognitive affective syndrome (CCAS). CCAS can be tracked using newly developed rating scales. In addition, patients with spinocerebellar ataxia also display impulsive and compulsive behavior, depression, anxiety, fatigue, and sleep disturbances. This review stresses the importance of recognizing non-motor symptoms in SCAs. There is a pressing need for novel therapeutic interventions to address these symptoms given their deleterious impact on patients' quality of life.


Assuntos
Qualidade de Vida , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Cerebelo , Emoções , Cognição
6.
J Neuroinflammation ; 20(1): 126, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237366

RESUMO

The spinocerebellar ataxias (SCAs) are devastating neurological diseases characterized by progressive cerebellar incoordination. While neurons bear the brunt of the pathology, a growing body of evidence suggests that glial cells are also affected. It has, however, been difficult to understand the role of glia, given the diversity of subtypes, each with their individual contributions to neuronal health. Using human SCA autopsy samples we have discovered that Bergmann glia-the radial glia of the cerebellum, which form intimate functional connections with cerebellar Purkinje neurons-display inflammatory JNK-dependent c-Jun phosphorylation. This phosphorylation defines a signaling pathway not observed in other activated glial populations, providing an opportunity to isolate the role of Bergmann glia in SCA inflammation. Turning to an SCA1 mouse model as a paradigmatic SCA, we demonstrate that inhibiting the JNK pathway reduces Bergmann glia inflammation accompanied by improvements in the SCA1 phenotype both behaviorally and pathologically. These findings demonstrate the causal role for Bergmann glia inflammation in SCA1 and point to a novel therapeutic strategy that could span several ataxic syndromes where Bergmann glia inflammation is a major feature.


Assuntos
Sistema de Sinalização das MAP Quinases , Ataxias Espinocerebelares , Camundongos , Animais , Humanos , Neuroglia/metabolismo , Cerebelo/metabolismo , Células de Purkinje/patologia , Inflamação/metabolismo
7.
Cerebellum ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243885

RESUMO

The Ataxia Global Initiative (AGI) aims to serve as a platform to facilitate clinical trial readiness for the hereditary ataxias. Clinical trials for these diseases have been hampered by the lack of objective measures to study disease onset, progression, and treatment efficacy. While these issues are not unique to the genetic ataxias, the relative rarity of these diseases makes the need for such measures even more pressing to achieve statistical power in clinical trials. In this report, we have described the efforts of the AGI fluid biomarker working group (WG) in developing uniform protocols for biomarker sampling and storage, both for human and preclinical studies in mice. By reducing collection variability, we anticipate reduced noise in downstream biomarker analysis that will improve statistical power and minimize the necessary sample size. The emphasis has been on defining and standardizing the sampling and pre-analytical work-up of minimal set of biological samples, specifically blood plasma and serum, keeping in mind the need for harmonization of collection and storage that can be achieved with relatively limited cost and resources. An optional package is detailed for those centers that have the resources and commitment for additional biofluids/sample processing and storage. Finally, we have delineated similar standardized protocols for mice that will be important for preclinical studies in the field.

8.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962273

RESUMO

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Gravidade do Paciente , Progressão da Doença
9.
Hum Mol Genet ; 28(8): 1343-1356, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590536

RESUMO

Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role. While germ-line deletion of Thap1 is embryonic lethal, mice lacking one Thap1 allele-which in principle should recapitulate the haploinsufficiency of the human syndrome-do not show a discernable phenotype. This is because mice show autoregulation of Thap1 mRNA levels with upregulation at the non-affected locus. We then deleted Thap1 in glial and neuronal precursors using a nestin-conditional approach. Although these mice do not exhibit dystonia, they show pronounced locomotor deficits reflecting derangements in the cerebellar and basal ganglia circuitry. These behavioral features are associated with alterations in the expression of genes involved in nervous system development, synaptic transmission, cytoskeleton, gliosis and dopamine signaling that link DYT6 to other primary and secondary dystonic syndromes.


Assuntos
Proteínas de Ligação a DNA/genética , Distonia Muscular Deformante/genética , Distúrbios Distônicos/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Distonia/genética , Distonia Muscular Deformante/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Regulação da Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Síndrome , Dedos de Zinco
10.
Brain ; 142(2): 312-321, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649233

RESUMO

There is increasing appreciation for the role of the neurovascular unit in neurodegenerative diseases. We showed previously that the angiogenic and neurotrophic cytokine, vascular endothelial growth factor (VEGF), is suppressed to abnormally low levels in spinocerebellar ataxia type 1 (SCA1), and that replenishing VEGF reverses the cerebellar pathology in SCA1 mice. In that study, however, we used a recombinant VEGF, which is extremely costly to manufacture and biologically unstable as well as immunogenic. To develop a more viable therapy, here we test a synthetic VEGF peptide amphiphile that self-assembles into nanoparticles. We show that this nano-VEGF has potent neurotrophic and angiogenic properties, is well-tolerated, and leads to functional improvement in SCA1 mice even when administered at advanced stages of the disease. This approach can be generalized to other neurotrophic factors or molecules that act in a paracrine manner, offering a novel therapeutic strategy for neurodegenerative conditions.


Assuntos
Nanopartículas/administração & dosagem , Ataxias Espinocerebelares/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Adulto , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Nanopartículas/química , Técnicas de Cultura de Órgãos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/síntese química
11.
Hum Mol Genet ; 25(11): 2143-2157, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27000625

RESUMO

Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin-proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation.


Assuntos
Proteínas do Citoesqueleto/genética , Neuropatia Axonal Gigante/genética , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Neuropatia Axonal Gigante/patologia , Humanos , Proteínas de Filamentos Intermediários/biossíntese , Filamentos Intermediários/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
12.
Cerebellum ; 16(2): 340-347, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27306906

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell-based clinical trials.


Assuntos
Células-Tronco Adultas/metabolismo , Ataxina-1/metabolismo , Proliferação de Células/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Ataxias Espinocerebelares/metabolismo , Células-Tronco Adultas/patologia , Animais , Ataxina-1/genética , Western Blotting , Bromodesoxiuridina , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Imuno-Histoquímica , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicho de Células-Tronco/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Neurosci ; 35(32): 11292-307, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269637

RESUMO

Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT: In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.


Assuntos
Cerebelo/patologia , Potenciais da Membrana/fisiologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Potenciais de Ação/fisiologia , Animais , Ataxina-1 , Ataxinas , Atrofia/patologia , Atrofia/fisiopatologia , Cerebelo/fisiopatologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/fisiopatologia
14.
Hum Mol Genet ; 23(14): 3733-45, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594842

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.


Assuntos
Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/patologia , Animais , Ataxina-1 , Ataxinas , Peso Corporal , Linhagem Celular Tumoral , Cerebelo/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células HEK293 , Haploinsuficiência , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Atividade Motora , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Células de Purkinje/patologia , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética
16.
Mov Disord Clin Pract ; 11(5): 496-503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419568

RESUMO

BACKGROUND: Fatigue is a prevalent and debilitating symptom in neurological disorders, including spinocerebellar ataxias (SCAs). However, the risk factors of fatigue in the SCAs as well as its impact have not been well investigated. OBJECTIVES: To study the prevalence of fatigue in SCAs, the factors contributing to fatigue, and the influence of fatigue on quality of life. METHODS: Fatigue was assessed in 418 participants with SCA1, SCA2, SCA3, and SCA6 from the Clinical Research Consortium for the Study of Cerebellar Ataxia using the Fatigue Severity Scale. We conducted multi-variable linear regression models to examine the factors contributing to fatigue as well as the association between fatigue and quality of life. RESULTS: Fatigue was most prevalent in SCA3 (52.6%), followed by SCA1 (36.7%), SCA6 (35.7%), and SCA2 (35.6%). SCA cases with fatigue had more severe ataxia and worse depressive symptoms. In SCA3, those with fatigue had a longer disease duration and longer pathological CAG repeat numbers. In multi-variable models, depressive symptoms, but not ataxia severity, were associated with more severe fatigue. Fatigue, independent of ataxia and depression, contributed to worse quality of life in SCA3 and SCA6 at baseline, and fatigue continued affecting quality of life throughout the disease course in all types of SCA. CONCLUSIONS: Fatigue is a common symptom in SCAs and is closely related to depression. Fatigue significantly impacts patients' quality of life. Therefore, screening for fatigue should be considered a part of standard clinical care for SCAs.


Assuntos
Fadiga , Qualidade de Vida , Ataxias Espinocerebelares , Humanos , Qualidade de Vida/psicologia , Ataxias Espinocerebelares/psicologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Masculino , Fadiga/psicologia , Fadiga/epidemiologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Índice de Gravidade de Doença , Prevalência , Depressão/epidemiologia , Depressão/psicologia
17.
Neuron ; 111(16): 2461-2462, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37591199

RESUMO

In this issue of Neuron, Pilotto et al.1 use state-of-the-art in vivo imaging in mice to show that excitatory/inhibitory imbalance drives SCA1 pathophysiology, with hyperexcitable molecular layer interneurons overinhibiting Purkinje cells, leading to hallmark neurodegeneration.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Animais , Camundongos , Neurônios , Ataxias Espinocerebelares/genética , Interneurônios
18.
Mol Biol Cell ; : mbcE23030094, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672338

RESUMO

Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, which regulates intermediate filament (IF) turnover. Previous neuropathological studies and examination of postmortem brain tissue in the current study revealed involvement of astrocytes in GAN. To develop a clinically-relevant model, we reprogrammed skin fibroblasts from seven GAN patients to pluripotent stem cells (iPSCs), which were used to generate neural progenitor cells (NPCs), astrocytes, and brain organoids. Multiple isogenic control clones were derived via CRISPR/Cas9 gene editing of one patient line carrying the G332R gigaxonin mutation. All GAN iPSCs were deficient for gigaxonin and displayed patient-specific increased vimentin expression. GAN NPCs had lower nestin expression and fewer nestin-positive cells compared to isogenic controls, but nestin morphology was unaffected. GAN brain organoids were marked by the presence of neurofilament and GFAP aggregates. GAN iPSC-astrocytes displayed striking dense perinuclear vimentin and GFAP accumulations and abnormal nuclear morphology. In over-expression systems, GFAP oligomerization and perinuclear aggregation were augmented in the presence of vimentin. GAN patient cells with large perinuclear vimentin aggregates accumulated significantly more nuclear KLHL16 mRNA compared to cells without vimentin aggregates. As an early effector of KLHL16 mutations, vimentin may be a potential target in GAN.

19.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993491

RESUMO

Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, a regulator of intermediate filament (IF) protein turnover. Previous neuropathological studies and our own examination of postmortem GAN brain tissue in the current study revealed astrocyte involvement in GAN. To study the underlying mechanisms, we reprogrammed skin fibroblasts from seven GAN patients carrying different KLHL16 mutations to iPSCs. Isogenic controls with restored IF phenotypes were derived via CRISPR/Cas9 editing of one patient carrying a homozygous missense mutation (G332R). Neural progenitor cells (NPCs), astrocytes, and brain organoids were generated through directed differentiation. All GAN iPSC lines were deficient for gigaxonin, which was restored in the isogenic control. GAN iPSCs displayed patient-specific increased vimentin expression, while GAN NPCs had decreased nestin expression compared to isogenic control. The most striking phenotypes were observed in GAN iPSC-astrocytes and brain organoids, which exhibited dense perinuclear IF accumulations and abnormal nuclear morphology. GAN patient cells with large perinuclear vimentin aggregates accumulated nuclear KLHL16 mRNA. In over-expression studies, GFAP oligomerization and perinuclear aggregation were potentiated in the presence of vimentin. As an early effector of KLHL16 mutations, vimentin may serve as a potential therapeutic target in GAN.

20.
Neurobiol Dis ; 48(3): 526-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22884877

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)-an ATXN1 binding inhibitor of histone acetylation-reverses aspects of SCA1 neuritic pathology.


Assuntos
Histona Acetiltransferases/biossíntese , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Acetilação , Animais , Ataxina-1 , Ataxinas , Regulação da Expressão Gênica/fisiologia , Técnicas de Introdução de Genes , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Células PC12 , Processamento de Proteína Pós-Traducional , Ratos , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa