Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1001, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429505

RESUMO

Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies.


Assuntos
Antineoplásicos/farmacocinética , Irinotecano/farmacocinética , Piridinas/farmacocinética , Quinolinas/farmacocinética , Linhagem Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas , Esferoides Celulares
2.
CPT Pharmacometrics Syst Pharmacol ; 8(11): 858-868, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31508894

RESUMO

Haematological toxicity associated with cancer therapeutics is monitored by changes in blood cell count, and their primary effect is on proliferative progenitors in the bone marrow. Using observations in rat bone marrow and blood, we characterize a mathematical model that comprises cell proliferation and differentiation of the full haematopoietic phylogeny, with interacting feedback loops between lineages in homeostasis as well as following carboplatin exposure. We accurately predicted the temporal dynamics of several mature cell types related to carboplatin-induced bone marrow toxicity and identified novel insights into haematopoiesis. Our model confirms a significant degree of plasticity within bone marrow cells, with the number and type of both early progenitors and circulating cells affecting cell balance, via feedback mechanisms, through fate decisions of the multipotent progenitors. We also demonstrated cross-species translation of our predictions to patients, applying the same core model structure and considering differences in drug-dependent and physiology-dependent parameters.


Assuntos
Medula Óssea/efeitos dos fármacos , Carboplatina/toxicidade , Biologia de Sistemas/métodos , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Homeostase , Humanos , Modelos Teóricos , Ratos
3.
Cancer Res ; 76(20): 6084-6094, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27550455

RESUMO

The PARP inhibitor AZD2461 was developed as a next-generation agent following olaparib, the first PARP inhibitor approved for cancer therapy. In BRCA1-deficient mouse models, olaparib resistance predominantly involves overexpression of P-glycoprotein, so AZD2461 was developed as a poor substrate for drug transporters. Here we demonstrate the efficacy of this compound against olaparib-resistant tumors that overexpress P-glycoprotein. In addition, AZD2461 was better tolerated in combination with chemotherapy than olaparib in mice, which suggests that AZD2461 could have significant advantages over olaparib in the clinic. However, this superior toxicity profile did not extend to rats. Investigations of this difference revealed a differential PARP3 inhibitory activity for each compound and a higher level of PARP3 expression in bone marrow cells from mice as compared with rats and humans. Our findings have implications for the use of mouse models to assess bone marrow toxicity for DNA-damaging agents and inhibitors of the DNA damage response. Finally, structural modeling of the PARP3-active site with different PARP inhibitors also highlights the potential to develop compounds with different PARP family member specificity profiles for optimal antitumor activity and tolerability. Cancer Res; 76(20); 6084-94. ©2016 AACR.


Assuntos
Neoplasias Experimentais/tratamento farmacológico , Ftalazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Descoberta de Drogas , Genes BRCA1 , Humanos , Camundongos , Ftalazinas/administração & dosagem , Ftalazinas/toxicidade , Piperazinas/administração & dosagem , Piperidinas/toxicidade , Poli(ADP-Ribose) Polimerases/química , Ratos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa