Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505890

RESUMO

The smo locus (sorbitol mannitol oxidation) is found on the chromosome of S. meliloti's tripartite genome. Mutations at the smo locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, d-arabitol and maltitol. The contribution of the smo locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that smoS is responsible for growth on sorbitol and galactitol, while mtlK restores growth on mannitol and d-arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD+-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and d-arabitol are primarily transported into the cell by the ABC transporter encoded by smoEFGK. Additionally, it was found that a mutation in either frcK, which is found in an operon that encodes the fructose ABC transporter, or a mutation in frk, which encodes fructose kinase, leads to the induction of mannitol transport.


Assuntos
Manitol , Sinorhizobium meliloti , Manitol/metabolismo , Frutose/metabolismo , Sinorhizobium meliloti/genética , Sorbitol/metabolismo , Galactitol/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética
2.
Can J Microbiol ; 68(4): 227-236, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34990307

RESUMO

Bacteriocins are narrow-spectrum antibiotics of bacterial origin that can affect competition in resource-limited environments, such as the rhizosphere. Therefore, bacteriocins may be good candidates for manipulation to generate more competitive inocula for soybean. In this study, Bradyrhizobium japonicum FN1, along with other Bradyrhizobia in our culture collection, was screened for bacteriocin-like activity. Five distinct inhibitory effects were observed. FN1 genes putatively involved in bacteriocin production were computationally identified. These genes were mutagenized, and the subsequent strains were screened for loss of inhibitory activity. Mutant strain BRJ-48, with an insert in bjfn1_01204, displayed a loss of ability to inhibit an indicator strain. This loss can be complemented by the introduction of a plasmid expressing bjfn1_01204 in trans. The strain carrying the mutation did not affect competition in broth cultures but was less competitive for nodule occupancy. Annotation suggests that bjfn1_01204 encodes a carboxymuconolactone decarboxylase; however, the direct contribution of how this enzyme contributes to inhibiting the tester strain remains unknown.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Fabaceae/microbiologia , Glycine max/microbiologia , Simbiose
3.
Can J Microbiol ; 67(7): 529-536, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33049159

RESUMO

The ability for a soybean plant to be efficiently nodulated when grown as a crop is dependent on the number of effective Bradyrhizobium japonicum that can be found in close proximity to the developing seedling shortly after planting. In Manitoba, the growing of soybean as a crop has increased from less than 500 000 acres in 2008 to over 2.3 million acres in 2017. Since the large increase in soybean production is relatively recent, populations of B. japonicum have not yet developed. In response to this, we developed a primer pair that can identify B. japonicum, and be used to determine the titre found in field soil. Their utility was demonstrated by being used to determine whether row spacing of soybean affects B. japonicum populations, as well as to follow B. japonicum populations in a soybean field over the course of a field season. The data show that plant density can affect B. japonicum populations. Moreover, evidence is presented that suggests plant development affects overall B. japonicum populations.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Produção Agrícola , Primers do DNA/genética , Manitoba , Reação em Cadeia da Polimerase , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Microbiologia do Solo
4.
Mol Genet Genomics ; 294(3): 739-755, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30879203

RESUMO

The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner-Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.


Assuntos
Proteínas de Bactérias/genética , Galactitol/metabolismo , Hexoses/metabolismo , L-Iditol 2-Desidrogenase/genética , Óperon/genética , Sinorhizobium meliloti/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Frutose-Bifosfato Aldolase/classificação , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Bacteriana da Expressão Gênica , L-Iditol 2-Desidrogenase/metabolismo , Filogenia , Plasmídeos/genética , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/metabolismo
5.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084855

RESUMO

Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.


Assuntos
Carbono/metabolismo , Mutação , Via de Pentose Fosfato/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/metabolismo , Eritritol/metabolismo , Medicago sativa/microbiologia , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Fenótipo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Simbiose , Transcetolase/genética
6.
Mol Plant Microbe Interact ; 30(12): 1009-1019, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871850

RESUMO

In this work, the hypothesis that exopolysaccharide plays a role in the survival of Sinorhizobium meliloti at low pH levels is addressed. When S. meliloti was grown at pH 5.75, synthesis of succinoglycan increased, whereas synthesis of galactoglucan decreased. Succinoglycan that was isolated from cultures grown at low pH had a lower degree of polymerization relative to that which was isolated from cultures grown at neutral pH, suggesting that low-molecular weight (LMW) succinoglycan might play a role in adaptation to low pH. Mutants unable to produce succinoglycan or only able to produce high-molecular weight polysaccharide were found to be sensitive to low pH. However, strains unable to produce LMW polysaccharide were 10-fold more sensitive. In response to low pH, transcription of genes encoding proteins for succinoglycan, glycogen, and cyclic ß(1-2) glucans biosynthesis increased, while those encoding proteins necessary for the biosynthesis of galactoglucan decreased. While changes in pH did not affect the production of glycogen or cyclic ß(1-2) glucan, it was found that the inability to produce cyclic ß(1-2) glucan did contribute to pH tolerance in the absence of succinoglycan. Finally, in addition to being sensitive to low pH, a strain carrying mutations in exoK and exsH, which encode the glycanases responsible for the cleavage of succinoglycan to LMW succinoglycan, exhibited a delay in nodulation and was uncompetitive for nodule occupancy. Taken together, the data suggest that the role for LMW succinoglycan in nodule development may be to enhance survival in the colonized curled root hair.


Assuntos
Ácidos/metabolismo , Adaptação Fisiológica , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiologia , Adaptação Fisiológica/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Mutação/genética , Polimerização , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Estresse Fisiológico/genética , Simbiose
7.
Can J Microbiol ; 63(6): 559-562, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28253454

RESUMO

In this work, we highlight effects of pH on bacterial phenotypes when using the bacteriological dyes Aniline blue, Congo red, and Calcofluor white to analyze polysaccharide production. A study of galactose catabolism in Sinorhizobium meliloti led to the isolation of a mutation in dgoK1, which was observed to overproduce exopolysaccharides when grown in the presence of galactose. When this mutant strain was spotted onto plates containing Aniline blue, Congo red, or Calcofluor white, the intensity of the associated staining was strikingly different from that of the wild type. Additionally, a Calcofluor dull phenotype was observed, suggesting production of a polysaccharide other than succinoglycan. Further investigation of this phenotype revealed that these results were dependent on medium acidification, as buffering at pH 6 had no effect on these phenotypes, while medium buffered at pH 6.5 resulted in a reversal of the phenotypes. Screening for mutants of the dgoK1 strain that were negative for the Aniline blue phenotype yielded a strain carrying a mutation in tkt2, which is annotated as a putative transketolase. Consistent with the plate phenotypes, when this mutant was grown in broth cultures, it did not acidify its growth medium. Overall, this work shows that caution should be exercised in evaluating polysaccharide phenotypes based strictly on the use of dyes.


Assuntos
Ágar , Corantes , Meios de Cultura/química , Polissacarídeos Bacterianos/análise , Sinorhizobium meliloti/química , Benzenossulfonatos/química , Concentração de Íons de Hidrogênio , Fenótipo , Sinorhizobium meliloti/genética
8.
J Bacteriol ; 197(24): 3812-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416834

RESUMO

UNLABELLED: Rhamnose catabolism in Rhizobium leguminosarum was found to be necessary for the ability of the organism to compete for nodule occupancy. Characterization of the locus necessary for the catabolism of rhamnose showed that the transport of rhamnose was dependent upon a carbohydrate uptake transporter 2 (CUT2) ABC transporter encoded by rhaSTPQ and on the presence of RhaK, a protein known to have sugar kinase activity. A linker-scanning mutagenesis analysis of rhaK showed that the kinase and transport activities of RhaK could be separated genetically. More specifically, two pentapeptide insertions defined by the alleles rhaK72 and rhaK73 were able to uncouple the transport and kinase activities of RhaK, such that the kinase activity was retained, but cells carrying these alleles did not have measurable rhamnose transport rates. These linker-scanning alleles were localized to the C terminus and N terminus of RhaK, respectively. Taken together, the data led to the hypothesis that RhaK might interact either directly or indirectly with the ABC transporter defined by rhaSTPQ. In this work, we show that both N- and C-terminal fragments of RhaK are capable of interacting with the N-terminal fragment of the ABC protein RhaT using a 2-hybrid system. Moreover, if RhaK fragments carrying either the rhaK72 or rhaK73 allele were used, this interaction was abolished. Phylogenetic and bioinformatic analysis of the RhaK fragments suggested that a conserved region in the N terminus of RhaK may represent a putative binding domain. Alanine-scanning mutagenesis of this region followed by 2-hybrid analysis revealed that a substitution of any of the conserved residues greatly affected the interaction between RhaT and RhaK fragments, suggesting that the sugar kinase RhaK and the ABC protein RhaT interact directly. IMPORTANCE: ABC transporters involved in the transport of carbohydrates help define the overall physiological fitness of bacteria. The two largest groups of transporters are the carbohydrate uptake transporter classes 1 and 2 (CUT1 and CUT2, respectively). This work provides the first evidence that a kinase that is necessary for the catabolism of a sugar can directly interact with a domain from the ABC protein that is necessary for its transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ramnose/metabolismo , Rhizobium leguminosarum/metabolismo , Simportadores/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Transporte Biológico Ativo/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Simportadores/genética
9.
Mol Plant Microbe Interact ; 27(12): 1307-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25387133

RESUMO

Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.


Assuntos
Medicago sativa/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polissacarídeos Bacterianos/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Aminas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzenossulfonatos , Corantes Fluorescentes , Galactose/genética , Galactose/metabolismo , Galactose Desidrogenases/genética , Galactose Desidrogenases/metabolismo , Genes Reporter , Concentração de Íons de Hidrogênio , Medicago sativa/citologia , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Nódulos Radiculares de Plantas/citologia , Plântula/citologia , Plântula/microbiologia , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose , Fatores de Tempo
10.
Microbiology (Reading) ; 160(Pt 9): 1882-1892, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015362

RESUMO

The environmental organism Serratia marcescens is one of the primary causes of numerous nosocomial outbreaks and opportunistic infections. Multi-drug resistance is now a common feature among S. marcescens clinical isolates, complicating the efficacy of treatment. Recent reports have attributed antibiotic resistance to altered porin expression as well as perturbation of the intrinsic AmpC beta-lactamase production pathway. In this study, we aimed to genetically correlate the absence of OmpF and OmpC classical porins with increased antibiotic resistance. In generating isogenic porin mutant strains, we avoided incorporating additional resistance through the use of antibiotic cassettes in gene replacement and adopted an alternative strategy in creating clean unmarked mutant strains. We found that lack of OmpF, but not OmpC, significantly increased antibiotic MIC values to the beta-lactam drugs such as ampicillin and cefoxitin as well as to nitrofurantoin. Furthermore, we found that cefoxitin did not induce intrinsic AmpC beta-lactamase production, indicating that the increased MIC values were a result of reduced permeability of cefoxitin due to the lack of OmpF. Genetic deletion of both ompF and ompC did not compromise the integrity of the bacterial cell envelope in optimal growth conditions, suggesting that other outer-membrane porins may function in a compensatory role to facilitate nutrient uptake and cell envelope integrity. Taken together, to our knowledge this is the first study that genetically correlates increased antibiotic resistance with altered porin expression in S. marcescens.


Assuntos
Farmacorresistência Bacteriana , Porinas/genética , Porinas/metabolismo , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Ampicilina/farmacologia , Antibacterianos/farmacologia , Cefoxitina/farmacologia , Deleção de Genes , Testes de Sensibilidade Microbiana , Nitrofurantoína
11.
Can J Microbiol ; 60(8): 491-507, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093748

RESUMO

A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.


Assuntos
Metabolismo dos Carboidratos , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Genes Bacterianos , Glicosídeos/metabolismo , Redes e Vias Metabólicas , Monossacarídeos/metabolismo , Rizosfera
12.
J Bacteriol ; 195(15): 3424-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708135

RESUMO

In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfotransferases/metabolismo , Ramnose/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Sequência de Aminoácidos , Análise Mutacional de DNA , Teste de Complementação Genética , Modelos Moleculares , Dados de Sequência Molecular , Fosfotransferases/genética , Conformação Proteica , Rhizobium leguminosarum/crescimento & desenvolvimento
13.
BMC Microbiol ; 13: 46, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23432981

RESUMO

BACKGROUND: The ability to use erythritol as a sole carbon source is not universal among the Rhizobiaceae. Based on the relatedness to the catabolic genes in Brucella it has been suggested that the eryABCD operon may have been horizontally transferred into Rhizobium. During work characterizing a locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti, we became interested in the differences between the erythritol loci of S. meliloti and R. leguminosarum. Utilizing the Ortholog Neighborhood Viewer from the DOE Joint Genome Institute database it appeared that loci for erythritol and polyol utilization had distinct arrangements that suggested these loci may have undergone genetic rearrangements. RESULTS: A data set was established of genetic loci containing erythritol/polyol orthologs for 19 different proteobacterial species. These loci were analyzed for genetic content and arrangement of genes associated with erythritol, adonitol and L-arabitol catabolism. Phylogenetic trees were constructed for core erythritol catabolic genes and contrasted with the species phylogeny. Additionally, phylogenetic trees were constructed for genes that showed differences in arrangement among the putative erythritol loci in these species. CONCLUSIONS: Three distinct erythritol/polyol loci arrangements have been identified that reflect metabolic need or specialization. Comparison of the phylogenetic trees of core erythritol catabolic genes with species phylogeny provides evidence that is consistent with these loci having been horizontally transferred from the alpha-proteobacteria into both the beta and gamma-proteobacteria. ABC transporters within these loci adopt 2 unique genetic arrangements, and although biological data suggests they are functional erythritol transporters, phylogenetic analysis suggests they may not be orthologs and probably should be considered analogs. Finally, evidence for the presence of paralogs, and xenologs of erythritol catabolic genes in some of the genomes included in the analysis is provided.


Assuntos
Eritritol/metabolismo , Ordem dos Genes , Variação Genética , Redes e Vias Metabólicas/genética , Filogenia , Proteobactérias/genética , Proteobactérias/metabolismo , Carbono/metabolismo , Sintenia
14.
J Bacteriol ; 194(18): 5044-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22797764

RESUMO

A mutant unable to utilize galactose was isolated in Sinorhizobium meliloti strain Rm1021. The mutation was found to be in a gene annotated dgoK1, a putative 2-keto-3-deoxygalactonokinase. The genetic region was isolated on a complementing cosmid and subsequently characterized. Based on genetic and bioinformatic evidence, the locus encodes all five enzymes (galD, dgoK, dgoA, SMc00883, and ilvD1) involved in the De Ley-Doudoroff pathway for galactose catabolism. Although all five genes are present, genetic analysis suggests that the galactonase (SMc00883) and the dehydratase (ilvD1) are dispensable with respect to the ability to catabolize galactose. In addition, we show that the transport of galactose is partially facilitated by the arabinose transporter (AraABC) and that both glucose and galactose compete with arabinose for transport. Quantitative reverse transcription-PCR (qRT-PCR) data show that in a dgoK background, the galactose locus is constitutively expressed, and the induction of the ara locus seems to be enhanced. Assays of competition for nodule occupancy show that the inability to catabolize galactose is correlated with an increased ability to compete for nodule occupancy.


Assuntos
Galactose/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Medicago sativa/microbiologia , Redes e Vias Metabólicas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Microbiology (Reading) ; 158(Pt 8): 2180-2191, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609752

RESUMO

The Sinorhizobium meliloti locus necessary for the utilization of erythritol as a sole carbon source, contains 17 genes, including genes that encode an ABC transporter necessary for the transport of erythritol, as well as the genes encoding EryA, EryB, EryC, TpiB and the regulators EryD and EryR (SMc01615). Construction of defined deletions and complementation experiments show that the other genes at this locus encode products that are necessary for the catabolism of adonitol (ribitol) and l-arabitol, but not d-arabitol. These analyses show that aside from one gene that is specific for the catabolism of l-arabitol (SMc01619, lalA), the rest of the catabolic genes are necessary for both polyols (SMc01617, rbtC; SMc01618, rbtB; SMc01622, rbtA). Genetic and biochemical data show that in addition to utilizing erythritol as a substrate, EryA is also capable of utilizing adonitol and l-arabitol. Similarly, transport experiments using labelled erythritol show that adonitol, l-arabitol and erythritol share a common transporter (MptABCDE). Quantitative RT-PCR experiments show that transcripts containing genes necessary for adonitol and l-arabitol utilization are induced by these sugars in an eryA-dependent manner.


Assuntos
Proteínas de Bactérias/metabolismo , Eritritol/metabolismo , Ribitol/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Álcoois Açúcares/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Teste de Complementação Genética
16.
Microbiology (Reading) ; 158(Pt 5): 1369-1378, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22343359

RESUMO

Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in Rhizobium leguminosarum. We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in R. leguminosarum bv. viciae VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes glpK and glpD, encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene glpR were organized into a single operon, and were required for growth on glycerol. The glp operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as Escherichia coli and Pseudomonas aeruginosa, which use facilitated diffusion, glycerol uptake occurs by an active process in R. leguminosarum. Since the glp locus is highly conserved in all sequenced R. leguminosarum and Rhizobium etli strains, as well as in Sinorhizobium spp. and Agrobacterium spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Óperon , Nodulação , Rhizobium leguminosarum/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Biologia Computacional , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicerol Quinase/metabolismo , Glicerofosfatos/metabolismo , Mutagênese Insercional , Pisum sativum/microbiologia , Plasmídeos , Proteínas Repressoras/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/fisiologia , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 78(19): 7141-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22843517

RESUMO

The twin-arginine transport (Tat) system is essential for cell viability in Sinorhizobium meliloti and may play a role during the development of root nodules. Utilizing an in vivo recombination strategy, we have constructed 28 strains that contain deletions in predicted Tat substrates. Testing of these mutations for symbiotic proficiency on the plant hosts alfalfa and sweet clover shows that some of these mutations affect associations with these hosts differentially.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Simbiose , Deleção de Genes , Medicago sativa/microbiologia , Melilotus/microbiologia , Fenótipo , Recombinação Genética , Sinorhizobium meliloti/metabolismo
18.
Microbiol Resour Announc ; 11(7): e0021622, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670609

RESUMO

Here, we report the genome sequences of Rhizobium gallicum M101, Rhizobium sp. strain C104, and Rhizobium sp. strain K102. These bacteria were isolated from three locations in Manitoba, Canada. The M101 genome meets the criteria for R. gallicum based on average nucleotide identity and DNA-DNA hybridization; the genomes of C104 and K102 are below the thresholds to be matched to known type strains.

19.
Microorganisms ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456783

RESUMO

Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as a sole carbon source were isolated. S. meliloti mutations affecting rhamnose utilization were found in two operons syntenous to those of R. leguminosarum. Although the S. meliloti Tn5 mutants were complemented using an R. leguminosarum cosmid that contains the entire wild-type rhamnose catabolic locus, complementation did not occur if the cosmids carried Tn5 insertions within the locus. Through a series of heterologous complementation experiments, enzyme assays, gene fusion, and transport experiments, we show that the S. meliloti regulator, RhaR, is dominant to its R. leguminosarum counterpart. In addition, the data support the hypothesis that the R. leguminosarum kinase is capable of directly phosphorylating rhamnose and rhamnulose, whereas the S. meliloti kinase does not possess rhamnose kinase activity. In nodule competition assays, S. meliloti mutants incapable of rhamnose transport were shown to be less competitive than the wild-type and had a decreased ability to bind plant roots in the presence of rhamnose. The data suggests that rhamnose catabolism is a general determinant in competition for nodule occupancy that spans across rhizobial species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa