Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17257, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38149334

RESUMO

The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.

2.
Genomics ; 113(5): 3395-3404, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339816

RESUMO

Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.


Assuntos
Oncorhynchus mykiss , Animais , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único
3.
BMC Genomics ; 22(1): 301, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902445

RESUMO

BACKGROUND: The lack of an understanding about the genomic architecture underpinning parental behaviour in subsocial insects displaying simple parental behaviours prevents the development of a full understanding about the evolutionary origin of sociality. Lethrus apterus is one of the few insect species that has biparental care. Division of labour can be observed between parents during the reproductive period in order to provide food and protection for their offspring. RESULTS: Here, we report the draft genome of L. apterus, the first genome in the family Geotrupidae. The final assembly consisted of 286.93 Mbp in 66,933 scaffolds. Completeness analysis found the assembly contained 93.5% of the Endopterygota core BUSCO gene set. Ab initio gene prediction resulted in 25,385 coding genes, whereas homology-based analyses predicted 22,551 protein coding genes. After merging, 20,734 were found during functional annotation. Compared to other publicly available beetle genomes, 23,528 genes among the predicted genes were assigned to orthogroups of which 1664 were in species-specific groups. Additionally, reproduction related genes were found among the predicted genes based on which a reduction in the number of odorant- and pheromone-binding proteins was detected. CONCLUSIONS: These genes can be used in further comparative and functional genomic researches which can advance our understanding of the genetic basis and hence the evolution of parental behaviour.


Assuntos
Besouros , Animais , Besouros/genética , Genoma de Inseto , Genômica , Reprodução , Comportamento Social
4.
Mol Biol Rep ; 48(1): 171-181, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33275194

RESUMO

Cheetahs (Acinonyx jubatus) are listed as vulnerable on the International Union for Conservation of Nature Red List of Threatened Species. Threats include loss of habitat, human-wildlife conflict and illegal wildlife trade. In South Africa, the export of wild cheetah is a restricted activity under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), however, limited legal trade is permitted of animals born to captive parents. To effectively monitor the legal and illegal trade in South Africa, it was thus essential to develop a validated molecular test. Here, we designed a single nucleotide polymorphism (SNP) array for cheetah from Double Digest Restriction Associated DNA sequencing data for individual identification and parentage testing. In order to validate the array, unrelated individuals and 16 family groups consisting of both parents and one to three offspring were genotyped using the Applied Biosystems™ QuantStudio™ 12K Flex Real-Time PCR System. In addition, parentage assignments were compared to microsatellite data. Cross-species amplification was tested in various felids and cheetah sub-species in order to determine the utility of the SNP array in other species. We obtained successful genotyping results for 218 SNPs in cheetah (A. j. jubatus) with an optimal DNA input concentration ranging from 10 to 30 ng/µl. The combination of SNPs had a higher resolving power for individual identification compared to microsatellites and provided high assignment accuracy in known pedigrees. Cross-species amplification in other felids was determined to be limited. However, the SNP array demonstrated a clear genetic discrimination of two cheetah subspecies tested here. We conclude that the described SNP array is suitable for accurate parentage assignment and provides an important traceability tool for forensic investigations of cheetah trade.


Assuntos
Acinonyx/genética , Conservação dos Recursos Naturais , Genoma/genética , Genômica , Animais , Animais Selvagens/genética , Comércio , Ecossistema , Espécies em Perigo de Extinção , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , África do Sul
5.
BMC Genet ; 21(1): 43, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303177

RESUMO

BACKGROUND: Constraints in migratory capabilities, such as the disruption of gene flow and genetic connectivity caused by habitat fragmentation, are known to affect genetic diversity and the long-term persistence of populations. Although negative population trends due to ongoing forest loss are widespread, the consequence of habitat fragmentation on genetic diversity, gene flow and genetic structure has rarely been investigated in Bornean small mammals. To fill this gap in knowledge, we used nuclear and mitochondrial DNA markers to assess genetic diversity, gene flow and the genetic structure in the Bornean tree shrew, Tupaia longipes, that inhabits forest fragments of the Lower Kinabatangan Wildlife Sanctuary, Sabah. Furthermore, we used these markers to assess dispersal regimes in male and female T. longipes. RESULTS: In addition to the Kinabatangan River, a known barrier for dispersal in tree shrews, the heterogeneous landscape along the riverbanks affected the genetic structure in this species. Specifically, while in larger connected forest fragments along the northern riverbank genetic connectivity was relatively undisturbed, patterns of genetic differentiation and the distribution of mitochondrial haplotypes in a local scale indicated reduced migration on the strongly fragmented southern riverside. Especially, oil palm plantations seem to negatively affect dispersal in T. longipes. Clear sex-biased dispersal was not detected based on relatedness, assignment tests, and haplotype diversity. CONCLUSION: This study revealed the importance of landscape connectivity to maintain migration and gene flow between fragmented populations, and to ensure the long-term persistence of species in anthropogenically disturbed landscapes.


Assuntos
Estruturas Genéticas , Variação Genética , Tupaia/genética , Animais , Ecossistema , Feminino , Fluxo Gênico/genética , Marcadores Genéticos/genética , Haplótipos/genética , Malásia , Masculino , Mamíferos , Rios
6.
Fish Shellfish Immunol ; 104: 192-201, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32534231

RESUMO

Infectious diseases represent an important barrier to sustainable aquaculture development. Rearing density can substantially impact fish productivity, health and welfare in aquaculture, including growth rates, behaviour and, crucially, immune activity. Given the current emphasis on aquaculture diversification, stress-related indicators broadly applicable across species are needed. Utilising an interspecific comparative transcriptomic (RNAseq) approach, we compared gill gene expression responses of Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus) to rearing density and Saprolegnia parasitica infection. Salmon reared at high-density showed increased expression of stress-related markers (e.g. c-fos and hsp70), and downregulation of innate immune genes. Upon pathogen challenge, only salmon reared at low density exhibited increased expression of inflammatory interleukins and lymphocyte-related genes. Tilapia immunity, in contrast, was impaired at low-density. Using overlapping gene ontology enrichment and gene ortholog analyses, we found that density-related stress similarly impacted salmon and tilapia in key immune pathways, altering the expression of genes vital to inflammatory and Th17 responses to pathogen challenge. Given the challenges posed by ectoparasites and gill diseases in fish farms, this study underscores the importance of optimal rearing densities for immunocompetence, particularly for mucosal immunity. Our comparative transcriptomics analyses identified density stress impacted immune markers common across different fish taxa, providing key molecular targets with potential for monitoring and enhancing aquaculture resilience in a wide range of farmed species.


Assuntos
Aquicultura/métodos , Ciclídeos , Doenças dos Peixes , Infecções , Salmo salar , Saprolegnia , Animais , Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Infecções/genética , Infecções/imunologia , Infecções/veterinária , Densidade Demográfica , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma
7.
Heredity (Edinb) ; 123(3): 307-317, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30886391

RESUMO

Livestock production both contributes to and is affected by global climate change, and substantial modifications will be required to increase its climate resilience. In this context, reliance on dominant commercial livestock breeds, featuring small effective population sizes, makes current production strategies vulnerable if their production is restricted to environments, which may be too costly to support under future climate scenarios. The adaptability of animal populations to future environments will therefore become important. To help evaluate the role of genetics in climate adaptation, we compared selection strategies in dairy cattle using breeding simulations, where genomic selection was used on two negatively correlated traits for production (assumed to be moderately heritable) and adaptation (assumed to have low heritability). Compared with within-population breeding, genomic introgression produced a more positive genetic change for both production and adaptation traits. Genomic introgression from highly adapted but low production value populations into highly productive but low adaptation populations was most successful when the adaptation trait was given a lower selection weight than the production trait. Genomic introgression from highly productive population to highly adapted population was most successful when the adaptation trait was given a higher selection weight than the production trait. Both these genomic introgression schemes had the lowest risk of inbreeding. Our results suggest that both adaptation and production can potentially be improved simultaneously by genomic introgression.


Assuntos
Adaptação Fisiológica/genética , Cruzamento/estatística & dados numéricos , Indústria de Laticínios , Modelos Genéticos , Característica Quantitativa Herdável , Seleção Genética , Animais , Bovinos , Mudança Climática , Simulação por Computador , Feminino , Introgressão Genética , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Proc Natl Acad Sci U S A ; 113(24): 6707-12, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27162355

RESUMO

Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.


Assuntos
Camelus , Domesticação , Animais , Animais Domésticos/genética , Teorema de Bayes , DNA , DNA Mitocondrial/genética , Variação Genética , Humanos
9.
BMC Genomics ; 19(1): 723, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285628

RESUMO

BACKGROUND: Captive animal populations, be it for food production or conservation programmes, are often maintained at densities far beyond those in natural environments, which can have profound effects on behaviour, immune and stress levels, and ultimately welfare. How such alterations impact transcriptional responses to pathogen infection is a 'different kettle of fish' and remains poorly understood. Here, we assessed survival and gene expression profiles of infected fish reared at two different densities to elucidate potential functional genomic mechanisms for density-related differences in disease susceptibility. RESULTS: Utilising a whole-transcriptome sequencing (RNAseq) approach, we demonstrate that rearing density in tilapia (Oreochromis niloticus) significantly impacts susceptibility to the oomycete Saprolegnia parasitica, via altered transcriptional infection responses. Tilapia held at low densities have increased expression of genes related to stress, likely due to increased aggressive interactions. When challenged with Saprolegnia, low-density fish exhibit altered expression of inflammatory gene responses and enhanced levels of adaptive immune gene suppression compared to fish reared at higher density, resulting in significantly increased mortality rates. In addition, Saprolegnia infection substantially perturbs expression of circadian clock genes, with fish reared at low-density having higher levels of molecular clock dysregulation. CONCLUSIONS: Our results reveal the wide-scale impact of stocking density on transcriptional responses to infection and highlight the need to incorporate circadian biology into our understanding of disease dynamics in managed animals.


Assuntos
Ciclídeos/genética , Ciclídeos/parasitologia , Perfilação da Expressão Gênica , Saprolegnia/fisiologia , Animais , Ciclídeos/crescimento & desenvolvimento , Brânquias/metabolismo , Brânquias/parasitologia , Pele/metabolismo , Pele/parasitologia , Análise de Sobrevida
10.
11.
Front Zool ; 13: 28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366197

RESUMO

BACKGROUND: Bitter taste perception is essential for species with selective food intake, enabling them to avoid unpalatable or toxic items. Previous studies noted a marked variation in the number of TAS2R genes among various vertebrate species, but the underlying causes are not well understood. Laurasiatherian mammals have highly diversified dietary niche, showing repeated evolution of specialized feeding preferences in multiple lineages and offering a unique chance to investigate how various feeding niches are associated with copy number variation for bitter taste receptor genes. RESULTS: Here we investigated the evolutionary trajectories of TAS2Rs and their implications on bitter taste perception in whole-genome assemblies of 41 Laurasiatherian species. The number of intact TAS2Rs copies varied considerably, ranging from 0 to 52. As an extreme example of a narrow dietary niche, the Chinese pangolin possessed the lowest number of intact TAS2Rs (n = 2) among studied terrestrial vertebrates. Marine mammals (cetacea and pinnipedia), which swallow prey whole, presented a reduced copy number of TAS2Rs (n = 0-5). In contrast, independent insectivorous lineages, such as the shrew and insectivorous bats possessed a higher TAS2R diversity (n = 52 and n = 20-32, respectively), exceeding that in herbivores (n = 9-22) and omnivores (n = 18-22). CONCLUSIONS: Besides herbivores, insectivores in Laurasiatheria tend to have more functional TAS2Rs in comparison to carnivores and omnivores. Furthermore, animals swallowing food whole (cetacean, pinnipedia and pangolin) have lost most functional TAS2Rs. These findings provide the most comprehensive view of the bitter taste gene repertoire in Laurasiatherian mammals to date, casting new light on the relationship between losses and gains of TAS2Rs and dietary specialization in mammals.

12.
Mol Biol Evol ; 31(2): 364-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24150039

RESUMO

Experimental evolution in combination with whole-genome sequencing (evolve and resequence [E&R]) is a promising approach to define the genotype-phenotype map and to understand adaptation in evolving populations. Many previous studies have identified a large number of putative selected sites (i.e., candidate loci), but it remains unclear to what extent these loci are genuine targets of selection or experimental noise. To address this question, we exposed the same founder population to two different selection regimes-a hot environment and a cold environment-and quantified the genomic response in each. We detected large numbers of putative selected loci in both environments, albeit with little overlap between the two sets of candidates, indicating that most resulted from habitat-specific selection. By quantifying changes across multiple independent biological replicates, we demonstrate that most of the candidate SNPs were false positives that were linked to selected sites over distances much larger than the typical linkage disequilibrium range of Drosophila melanogaster. We show that many of these mid- to long-range associations were attributable to large segregating inversions and confirm by computer simulations that such patterns could be readily replicated when strong selection acts on rare haplotypes. In light of our findings, we outline recommendations to improve the performance of future Drosophila E&R studies which include using species with negligible inversion loads, such as D. mauritiana and D. simulans, instead of D. melanogaster.


Assuntos
Evolução Biológica , Drosophila melanogaster/genética , Genoma de Inseto , Seleção Genética , Adaptação Biológica , Animais , Temperatura Baixa , Ecossistema , Estudos de Associação Genética , Variação Genética , Genômica , Temperatura Alta , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Inversão de Sequência , Especificidade da Espécie
13.
Proc Biol Sci ; 282(1809): 20150425, 2015 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-26041359

RESUMO

The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes--are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within--island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50,000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island--ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole.


Assuntos
Especiação Genética , Hibridização Genética , Iguanas/genética , Animais , Equador , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
14.
Mol Ecol ; 23(16): 3941-3, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25088552

RESUMO

Admixture results from interbreeding between individuals from different populations or species that were previously genetically isolated from each other (Fig. ). Identifying admixture events in the genome is not always a straightforward task, because the genetic signature left behind fades with time as recombination events fragment the genomic segments introduced during the interbreeding event. Additionally, when the genetic architecture of populations or species that admix is not very different (e.g. they coalesce to a common ancestor recently), admixture signatures may be difficult to detect. Ignoring the effects of admixture can, however, pose severe problems for population genetic analyses that rely on the distribution of polymorphic markers across the genome. In this issue of Molecular Ecology, Bosse et al. () analyse genomic data from modern pigs to understand hybridization processes that occurred between domestic pigs from European and Asiatic origin, and between pigs and wild boars. Their results are interesting regarding the fine-scale distribution of admixture across the pig genome, and the way in which this admixture biases estimates of the effective population size in European domestic pigs. The implications of these results are significant, as they serve as a cautionary note on genomic analyses that depend on the distribution of polymorphic variants in potentially admixed populations.


Assuntos
Genética Populacional , Hibridização Genética , Sus scrofa/genética , Animais
15.
PLoS Genet ; 7(10): e1002314, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998598

RESUMO

Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability. We observed that Drosophila melanogaster overexpressing Cyclin G (CycG) exhibit wing asymmetry clearly detectable by sight. Quantification of wing size and shape using geometric morphometrics reveals that this asymmetry is a genuine-but extreme-fluctuating asymmetry. Overexpression of CycG indeed leads to a 40-fold increase of wing fluctuating asymmetry, which is an unprecedented effect, for any organ and in any animal model, either in wild populations or mutants. This asymmetry effect is not restricted to wings, since femur length is affected as well. Inactivating CycG by RNAi also induces fluctuating asymmetry but to a lesser extent. Investigating the cellular bases of the phenotypic effects of CycG deregulation, we found that misregulation of cell size is predominant in asymmetric flies. In particular, the tight negative correlation between cell size and cell number observed in wild-type flies is impaired when CycG is upregulated. Our results highlight the role of CycG in the control of developmental stability in D. melanogaster. Furthermore, they show that wing developmental stability is normally ensured via compensatory processes between cell growth and cell proliferation. We discuss the possible role of CycG as a hub in a genetic network that controls developmental stability.


Assuntos
Ciclina G/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Sequência de Bases , Padronização Corporal/genética , Ciclina G/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Variação Genética , Genótipo , Dados de Sequência Molecular , Fenótipo , Interferência de RNA , Asas de Animais/anatomia & histologia
16.
Animals (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396528

RESUMO

Animal husbandry is one of man's oldest occupations. It began with the domestication of animals and developed continuously, in parallel with the evolution of human society. The selection and improvement of goats in Romania was not a clearly defined objective until around 1980. In recent years, with the increasing economic value given to goats, breeding programs are becoming established. In Romania, a few goat genetic studies using microsatellites and mtDNA have been carried out; however, a systematic characterization of the country's goat genomic resources remains missing. In this study, we analyzed the genetic variability of Carpatina goats from four distinct geographical areas (northern, north-eastern, eastern and southern Romania), using the Illumina OvineSNP60 (RefSeq ARS1) high-density chip for 67 goats. Heterozygosity values, inbreeding coefficients and effective population size across all autosomes were calculated for those populations that inhabit high- and low-altitude and high- and low-temperature environments. Diversity, as measured by expected heterozygosity (HE), ranged from 0.413 in the group from a low-temperature environment to 0.420 in the group from a high-temperature environment. Within studied groups, the HT (high temperature) goats were the only group with a positive but low average inbreeding coefficient value, which was 0.009. After quality control (QC) analysis, 46,965 SNPs remained for analysis (MAF < 0.01). LD was calculated for each chromosome separately. The Ne has been declining since the time of domestication, having recently reached 123, 125, 185 and 92 for the HA (high altitude), LA (low altitude), HT (high temperature) and LT (low temperature) group, respectively. Our study revealed a low impact of inbreeding in the Carpatina population, and the Ne trend also indicated a steep decline in the last hundred years. These results will contribute to the genetic improvement of the Carpatina breed.

17.
Mol Ecol ; 22(24): 6074-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24308649

RESUMO

Madagascar is a biodiversity hotspot with a unique fauna and flora largely endemic at the species level and highly threatened by habitat destruction. The processes underlying population-level differentiation in Madagascar's biota are poorly understood and have been proposed to be related to Pleistocene climatic cycles, yet the levels of genetic divergence observed are often suggestive of ancient events. We combined molecular markers of different variability to assess the phylogeography of Madagascar's emblematic tomato frogs (Dyscophus guineti and D. antongilii) and interpret the observed pattern as resulting from ancient and recent processes. Our results suggest that the initial divergence between these taxa is probably old as reflected by protein-coding nuclear genes and by a strong mitochondrial differentiation of the southernmost population. Dramatic changes in their demography appear to have been triggered by the end of the last glacial period and possibly by the short return of glacial conditions known as the 8K event. This dramatic change resulted in an approximately 50-fold reduction of the effective population size in various populations of both species. We hypothesize these species' current mitochondrial DNA diversity distribution reflects a swamping of the mitochondrial genetic diversity of D. guineti by that of D. antongilii previous to the populations' bottlenecks during the Holocene, and probably as a consequence of D. antongilii demographic expansion approximately 1 million years ago. Our data support the continued recognition of D. antongilii and D. guineti as separate species and flag D. guineti as the more vulnerable species to past and probably also future environmental changes.


Assuntos
Anuros/classificação , Evolução Biológica , Variação Genética , Hibridização Genética , Animais , Anuros/genética , Núcleo Celular/genética , Mudança Climática , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , Geografia , Haplótipos , Madagáscar , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia , Dinâmica Populacional
18.
Mol Phylogenet Evol ; 68(3): 657-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23632031

RESUMO

We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.


Assuntos
Anuros/classificação , Anuros/genética , Variação Genética , Filogenia , Filogeografia , Animais , DNA Mitocondrial/genética , Meio Ambiente , Genética Populacional , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Transcriptoma
19.
Conserv Physiol ; 11(1): coad055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588622

RESUMO

Agricultural expansion in Southeast Asia has converted most natural landscapes into mosaics of forest interspersed with plantations, dominated by the presence of generalist species that benefit from resource predictability. Dietary shifts, however, can result in metabolic alterations and the exposure of new parasites that can impact animal fitness and population survival. Our study focuses on the Asian water monitor lizard (Varanus salvator), one of the largest predators in the Asian wetlands, as a model species to understand the health consequences of living in a human-dominated landscape in Sabah, Malaysian Borneo. We evaluated the effects of dietary diversity on the metabolism of monitor lizards and the impact on the composition of their parasite communities in an oil palm-dominated landscape. Our results showed that (1) rodent-dominated diets were associated with high levels of lipids, proteins and electrolytes, akin to a fast-food-based diet of little representativeness of the full nutritional requirements, but highly available, and (2) lizards feeding on diverse diets hosted more diverse parasite communities, however, at overall lower parasite prevalence. Furthermore, we observed that the effect of diet on lipid concentration differed depending on the size of individual home ranges, suggesting that sedentarism plays an important role in the accumulation of cholesterol and triglycerides. Parasite communities were also affected by a homogeneous dietary behaviour, as well as by habitat type. Dietary diversity had a negative effect on both parasite richness and prevalence in plantations, but not in forested areas. Our study indicates that human-dominated landscapes can pose a negative effect on generalist species and hints to the unforeseen health consequences for more vulnerable taxa using the same landscapes. Thus, it highlights the potential role of such a widely distributed generalist as model species to monitor physiological effects in the ecosystem in an oil palm-dominated landscape.

20.
R Soc Open Sci ; 10(5): 230156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181798

RESUMO

Knowledge of diet and dietary selectivity is vital, especially for the conservation of declining species. Accurately obtaining this information, however, is difficult, especially if the study species feeds on a wide range of food items within heterogeneous and inaccessible environments, such as the tree canopy. Hawfinches (Coccothraustes coccothraustes), like many woodland birds, are declining for reasons that are unclear. We investigated the possible role that dietary selection may have in these declines in the UK. Here, we used a combination of high-throughput sequencing of 261 hawfinch faecal samples assessed against tree occurrence data from quadrats sampled in three hawfinch population strongholds in the UK to test for evidence of selective foraging. This revealed that hawfinches show selective feeding and consume certain tree genera disproportionally to availability. Positive selection was shown for beech (Fagus), cherry (Prunus), hornbeam (Carpinus), maples (Acer) and oak (Quercus), while Hawfinch avoided ash (Fraxinus), birch (Betula), chestnut (Castanea), fir (Abies), hazel (Corylus), rowan (Sorbus) and lime (Tilia). This approach provided detailed information on hawfinch dietary choice and may be used to predict the effects of changing food resources on other declining passerines populations in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa