Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(4): 663-77, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529372

RESUMO

Cancer is believed to arise primarily through accumulation of genetic mutations. Although induced pluripotent stem cell (iPSC) generation does not require changes in genomic sequence, iPSCs acquire unlimited growth potential, a characteristic shared with cancer cells. Here, we describe a murine system in which reprogramming factor expression in vivo can be controlled temporally with doxycycline (Dox). Notably, transient expression of reprogramming factors in vivo results in tumor development in various tissues consisting of undifferentiated dysplastic cells exhibiting global changes in DNA methylation patterns. The Dox-withdrawn tumors arising in the kidney share a number of characteristics with Wilms tumor, a common pediatric kidney cancer. We also demonstrate that iPSCs derived from Dox-withdrawn kidney tumor cells give rise to nonneoplastic kidney cells in mice, proving that they have not undergone irreversible genetic transformation. These findings suggest that epigenetic regulation associated with iPSC derivation may drive development of particular types of cancer.


Assuntos
Reprogramação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Animais , Metilação de DNA , Doxiciclina/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Renais/induzido quimicamente , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
2.
Physiol Rev ; 99(1): 79-114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328784

RESUMO

The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Células-Tronco Pluripotentes/classificação , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Fator 4 Semelhante a Kruppel
3.
BMC Bioinformatics ; 24(1): 252, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322439

RESUMO

BACKGROUND: Bioinformatics capability to analyze spatio-temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. RESULTS: This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio-temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio-temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate 'temporal' discriminator genes responsible for various cell type differentiations. CONCLUSIONS: eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio-temporal formation of cellular organizations.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Animais , Camundongos , Reprodutibilidade dos Testes , Encéfalo , Análise por Conglomerados , Análise Espaço-Temporal
4.
Cancer Sci ; 114(5): 1898-1911, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36661413

RESUMO

Mesenchymal stem cell- or osteoblast-derived osteosarcoma is the most common malignant bone tumor. Its highly metastatic malignant phenotypes, which are often associated with a poor prognosis, have been correlated with the modulation of TP53- and cell-cycle-related pathways. MYC, which regulates the transcription of cell-cycle modulating genes, is used as a representative prognostic marker for osteosarcoma. Another member of the MYC oncoprotein family, MYCN, is highly expressed in a subset of osteosarcoma, however its roles in osteosarcoma have not been fully elucidated. Here, we attempted to create an in vitro tumorigenesis model using hiPSC-derived neural crest cells, which are precursors of mesenchymal stem cells, by overexpressing MYCN on a heterozygous TP53 hotspot mutation (c.733G>A; p.G245S) background. MYCN-expressing TP53 mutated transformed clones were isolated by soft agar colony formation, and administered subcutaneously into the periadrenal adipose tissue of immunodeficient mice, resulting in the development of chondroblastic osteosarcoma. MYCN suppression decreased the proliferation of MYCN-induced osteosarcoma cells, suggesting MYCN as a potential target for a subset of osteosarcoma treatment. Further, comprehensive analysis of gene expression and exome sequencing of MYCN-induced clones indicated osteosarcoma-specific molecular features, such as the activation of TGF-ß signaling and DNA copy number amplification of GLI1. The model of MYCN-expressing chondroblastic osteosarcoma was developed from hiPSC-derived neural crest cells, providing a useful tool for the development of new tumor models using hiPSC-derived progenitor cells with gene modifications and in vitro transformation.


Assuntos
Neuroblastoma , Osteossarcoma , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Crista Neural/metabolismo , Crista Neural/patologia , Neuroblastoma/patologia , Proteínas Oncogênicas/genética , Osteossarcoma/patologia
5.
Drug Metab Dispos ; 51(9): 1177-1187, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385755

RESUMO

The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.


Assuntos
Rim , Proteína 1 Transportadora de Ânions Orgânicos , Humanos , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Expressão Gênica , Células Epiteliais/metabolismo
6.
Am J Physiol Renal Physiol ; 323(5): F515-F526, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049065

RESUMO

Although apoptosis of podocytes has been widely reported in in vitro studies, it has been less frequently and less definitively documented in in vivo situations. To investigate this discrepancy, we analyzed the dying process of podocytes in vitro and in vivo using LMB2, a human (h)CD25-directed immunotoxin. LMB2 induced cell death within 2 days in 56.8 ± 13.6% of cultured podocytes expressing hCD25 in a caspase-3, Bak1, and Bax-dependent manner. LMB2 induced typical apoptotic features, including TUNEL staining and fragmented nuclei without lactate dehydrogenase leakage. In vivo, LMB2 effectively eliminated hCD25-expressing podocytes in NEP25 mice. Podocytes injured by LMB2 were occasionally stained for cleaved caspase-3 and cleaved lamin A but never for TUNEL. Urinary sediment contained TUNEL-positive podocytes. To examine the effect of glomerular filtration, we performed unilateral ureteral obstruction in NEP25 mice treated with LMB2 1 day before euthanasia. In the obstructed kidney, glomeruli contained significantly more cleaved lamin A-positive podocytes than those in the contralateral kidney (50.1 ± 5.4% vs. 29.3 ± 4.1%, P < 0.001). To further examine the dying process without glomerular filtration, we treated kidney organoids generated from nephron progenitor cells of NEP25 mice with LMB2. Podocytes showed TUNEL staining and nuclear fragmentation. These results indicate that on activation of apoptotic caspases, podocytes are detached and lost in the urine before nuclear fragmentation and that the physical force of glomerular filtration facilitates detachment. This phenomenon may be the reason why definitive apoptosis is not observed in podocytes in vivo.NEW & NOTEWORTHY This report clarifies why morphologically definitive apoptosis is not observed in podocytes in vivo. When caspase-3 is activated in podocytes, these cells are immediately detached from the glomerulus and lost in the urine before DNA fragmentation occurs. Detachment is facilitated by glomerular filtration. This phenomenon explains why podocytes in vivo rarely show TUNEL staining and never apoptotic bodies.


Assuntos
Imunotoxinas , Podócitos , Camundongos , Humanos , Animais , Podócitos/metabolismo , Caspase 3/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/farmacologia , Proteína X Associada a bcl-2/metabolismo , Apoptose , Lactato Desidrogenases/metabolismo
7.
Biochem Biophys Res Commun ; 558: 231-238, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32113685

RESUMO

Several groups have developed in vitro expansion cultures for mouse metanephric nephron progenitor cells (NPCs) using cocktails of small molecules and growth factors including BMP7. However, the detailed mechanisms by which BMP7 acts in the NPC expansion remain to be elucidated. Here, by performing chemical screening for BMP substitutes, we identified a small molecule, TCS21311, that can replace BMP7 and revealed a novel inhibitory role of BMP7 in JAK3-STAT3 signaling in NPC expansion culture. Further, we found that TCS21311 facilitates the proliferation of mouse embryonic NPCs and human induced pluripotent stem cell-derived NPCs when added to the expansion culture. These results will contribute to understanding the mechanisms of action of BMP7 in NPC proliferation in vitro and in vivo and to the stable supply of NPCs for regenerative therapy, disease modeling and drug discovery for kidney diseases.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Inibidores de Janus Quinases/farmacologia , Néfrons/citologia , Néfrons/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 7/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Janus Quinase 3/antagonistas & inibidores , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Néfrons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
8.
Dev Growth Differ ; 63(2): 166-177, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33569792

RESUMO

Kidney organoids generated from human pluripotent stem cells (hPSCs) have drastically changed the field of stem cell research on human kidneys within a few years. They are self-organizing multicellular structures that contain nephron components such as glomeruli and renal tubules in most cases, but hPSC-derived ureteric buds, the progenitors of collecting ducts and ureters, can also form three-dimensional organoids. Today's challenges facing human kidney organoids are further maturation and anatomical integrity in order to achieve a complete model of the developing kidneys and ultimately a complete adult organ. Since chronic kidney disease (CKD) and impaired kidney function are an increasing burden on public health worldwide, there is an urgent need to develop effective treatments for various renal conditions. In this regard, hPSC-derived kidney organoids may impact medicine by providing new translational approaches. The unique ability of kidney organoids derived from disease-specific hPSCs to reproduce human diseases caused by genetic alterations may help provide the next generation of kidney disease models. Recent advances in the field of kidney organoid research have been generally accompanied by progress in developmental biology and other technological breakthroughs. In this review, we consider the current trends in kidney organoid technology, especially focusing on the relationship to the study of human kidney development, and discuss the remaining hurdles and prospects in regenerating human kidney structures beyond organoids.


Assuntos
Biologia do Desenvolvimento , Rim/citologia , Organoides/citologia , Animais , Diferenciação Celular , Humanos
9.
Clin Exp Nephrol ; 25(6): 574-584, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33656639

RESUMO

With few curative treatments for kidney diseases, increasing attention has been paid to regenerative medicine as a new therapeutic option. Recent progress in kidney regeneration using human-induced pluripotent stem cells (hiPSCs) is noteworthy. Based on the knowledge of kidney development, the directed differentiation of hiPSCs into two embryonic kidney progenitors, nephron progenitor cells (NPCs) and ureteric bud (UB), has been established, enabling the generation of nephron and collecting duct organoids. Furthermore, human kidney tissues can be generated from these hiPSC-derived progenitors, in which NPC-derived glomeruli and renal tubules and UB-derived collecting ducts are interconnected. The induced kidney tissues are further vascularized when transplanted into immunodeficient mice. In addition to the kidney reconstruction for use in transplantation, it has been demonstrated that cell therapy using hiPSC-derived NPCs ameliorates acute kidney injury (AKI) in mice. Disease modeling and drug discovery research using disease-specific hiPSCs has also been vigorously conducted for intractable kidney disorders, such as autosomal dominant polycystic kidney disease (ADPKD). In an attempt to address the complications associated with kidney diseases, hiPSC-derived erythropoietin (EPO)-producing cells were successfully generated to discover drugs and develop cell therapy for renal anemia. This review summarizes the current status and future perspectives of developmental biology of kidney and iPSC technology-based regenerative medicine for kidney diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Nefropatias/cirurgia , Rim/fisiopatologia , Regeneração , Medicina Regenerativa , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Fenótipo , Recuperação de Função Fisiológica , Resultado do Tratamento
10.
Artif Organs ; 45(5): 447-453, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33590913

RESUMO

Recent advances in developmental biology and stem cell biology have led to the increased availability of extrarenal stem cells, including mesenchymal/stromal stem cells (MSCs), renal stem or progenitor cells isolated from embryonic and adult kidneys, and kidney lineage cells or tissues generated from human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells. Regenerative medicine strategies for kidney diseases are largely categorized into the transplantation of reconstructed kidney organs and cell therapies. Reconstruction is being attempted by hPSC-derived kidney lineage cells with various strategies, such as self-organization, interspecies blastocyst complementation, utilization of a xenogeneic organ niche, decellularization and repopulation, and 3D bioprinting. However, cell therapies using extrarenal stem cells, such as MSCs, and renal stem or progenitor cells derived from embryonic and adult kidneys or differentiated from hPSCs have been investigated in animal models of both acute kidney injury and chronic kidney disease. Indeed, multiple clinical trials using MSCs, bone marrow stem cells, and kidney-derived cells have already been carried out. This review summarizes the current status and future perspective of kidney regenerative medicine strategies and discusses the closest and fastest strategies to solving the medical and economic problems associated with kidney diseases.


Assuntos
Transplante de Rim/métodos , Medicina Regenerativa/métodos , Insuficiência Renal Crônica/terapia , Animais , Bioimpressão/métodos , Bioimpressão/tendências , Diferenciação Celular , Efeitos Psicossociais da Doença , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Rim/citologia , Rim/fisiopatologia , Transplante de Células-Tronco Mesenquimais , Medicina Regenerativa/tendências , Insuficiência Renal Crônica/economia , Insuficiência Renal Crônica/fisiopatologia
11.
J Am Soc Nephrol ; 31(10): 2355-2371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747355

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease leading to renal failure, wherein multiple cysts form in renal tubules and collecting ducts derived from distinct precursors: the nephron progenitor and ureteric bud (UB), respectively. Recent progress in induced pluripotent stem cell (iPSC) biology has enabled cyst formation in nephron progenitor-derived human kidney organoids in which PKD1 or PKD2, the major causative genes for ADPKD, are deleted. However, cysts have not been generated in UB organoids, despite the prevalence of collecting duct cysts in patients with ADPKD. METHODS: CRISPR-Cas9 technology deleted PKD1 in human iPSCs and the cells induced to differentiate along pathways leading to formation of either nephron progenitor or UB organoids. Cyst formation was investigated in both types of kidney organoid derived from PKD1-deleted iPSCs and in UB organoids generated from iPSCs from a patient with ADPKD who had a missense mutation. RESULTS: Cysts formed in UB organoids with homozygous PKD1 mutations upon cAMP stimulation and, to a lesser extent, in heterozygous mutant organoids. Furthermore, UB organoids generated from iPSCs from a patient with ADPKD who had a heterozygous missense mutation developed cysts upon cAMP stimulation. CONCLUSIONS: Cysts form in PKD1 mutant UB organoids as well as in iPSCs derived from a patient with ADPKD. The organoids provide a robust model of the genesis of ADPKD.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Néfrons/patologia , Organoides/patologia , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Ureter/patologia , Técnicas de Cultura de Células , Humanos , Mutação de Sentido Incorreto/genética , Rim Policístico Autossômico Dominante/patologia
12.
Biochem Biophys Res Commun ; 529(4): 1186-1194, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819584

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder which manifests progressive renal cyst formation and leads to end-stage kidney disease. Around 85% of cases are caused by PKD1 heterozygous mutations, exhibiting relatively poorer renal outcomes than those with mutations in other causative gene PKD2. Although many disease models have been proposed for ADPKD, the pre-symptomatic pathology of the human disease remains unknown. To unveil the mechanisms of early cytogenesis, robust and genetically relevant human models are needed. Here, we report a novel ADPKD model using kidney organoids derived from disease-specific human induced pluripotent stem cells (hiPSCs). Importantly, we found that kidney organoids differentiated from gene-edited heterozygous PKD1-mutant as well as ADPKD patient-derived hiPSCs can reproduce renal cysts. Further, we demonstrated the possibility of ADPKD kidney organoids serving as drug screening platforms. This newly developed model will contribute to identifying novel therapeutic targets, extending the field of ADPKD research.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Modelos Biológicos , Organoides/patologia , Rim Policístico Autossômico Dominante/patologia , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mutação/genética , Fenótipo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
13.
Biochem Biophys Res Commun ; 526(3): 661-669, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248968

RESUMO

Orthotopic liver transplantation (OLT) is the only curative treatment for refractory chronic liver failure in liver cirrhosis. However, the supply of donated livers does not meet the demand for OLT due to donor organ shortage. Cell therapy using hepatocyte-like cells derived from human induced pluripotent stem cells (hiPSC-HLCs) is expected to mitigate the severity of liver failure, postpone OLT and ameliorate the insufficient liver supply. For the successful clinical translation of hiPSC-based cell therapy against liver cirrhosis, realistic animal models are required. In this study, we created a nonhuman primate (NHP) liver fibrosis model by repeated administrations of thioacetamide (TAA) and evaluated the short-term engraftment of hiPSC-HLCs in the fibrotic liver. The NHP liver fibrosis model reproduced well the pathophysiology of human liver cirrhosis including portal hypertension. Under immunosuppressive treatment, we transplanted ALBUMIN-GFP reporter hiPSC-HLC aggregates into the fibrotic livers of the NHP model via the portal vein. Fourteen days after the transplantation, GFP-expressing hiPSC-HLC clusters were detected in the portal areas of the fibrotic livers. These results will facilitate preclinical studies using the NHP liver fibrosis model and help establish iPSC-based cell therapies against liver cirrhosis.


Assuntos
Hepatócitos/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Macaca fascicularis , Tioacetamida
14.
Biochem Biophys Res Commun ; 495(1): 954-961, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158085

RESUMO

Recent progress in kidney regeneration research is noteworthy. However, the selective and robust differentiation of the ureteric bud (UB), an embryonic renal progenitor, from human pluripotent stem cells (hPSCs) remains to be established. The present study aimed to establish a robust induction method for branching UB tissue from hPSCs towards the creation of renal disease models. Here, we found that anterior intermediate mesoderm (IM) differentiates from anterior primitive streak, which allowed us to successfully develop an efficient two-dimensional differentiation method of hPSCs into Wolffian duct (WD) cells. We also established a simplified procedure to generate three-dimensional WD epithelial structures that can form branching UB tissues. This system may contribute to hPSC-based regenerative therapies and disease models for intractable disorders arising in the kidney and lower urinary tract.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/fisiologia , Regeneração/fisiologia , Engenharia Tecidual/métodos , Ureter/citologia , Ureter/crescimento & desenvolvimento , Células Cultivadas , Humanos , Células-Tronco Pluripotentes/citologia
15.
Diabetologia ; 60(8): 1454-1466, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28534195

RESUMO

AIMS/HYPOTHESIS: Pancreatic beta-like cells generated from human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells (hESCs) offer an appealing donor tissue source. However, differentiation protocols that mainly use growth factors are costly. Therefore, in this study, we aimed to establish efficient differentiation protocols to change hiPSCs/hESCs to insulin (INS)+ cells using novel small-molecule inducers. METHODS: We screened small molecules that increased the induction rate of INS+ cells from hESC-derived pancreatic and duodenal homeobox 1 (PDX1)+ pancreatic progenitor cells. The differentiation protocol to generate INS+ cells from hiPSCs/hESCs was optimised using hit compounds, and INS+ cells induced with the compounds were characterised for their in vitro and in vivo functions. The inducing activity of the hit compounds was also examined using mouse embryonic pancreatic tissues in an explant culture system. Finally, RNA sequencing analyses were performed on the INS+ cells to elucidate the mechanisms of action by which the hit compounds induced pancreatic endocrine differentiation. RESULTS: One hit compound, sodium cromoglicate (SCG), was identified out of approximately 1250 small molecules screened. When SCG was combined with a previously described protocol, the induction rate of INS+ cells increased from a mean ± SD of 5.9 ± 1.5% (n = 3) to 16.5 ± 2.1% (n = 3). SCG induced neurogenin 3-positive cells at a mean ± SD of 32.6 ± 4.6% (n = 3) compared with 14.2 ± 3.6% (n = 3) for control treatment without SCG, resulting in an increased generation of endocrine cells including insulin-producing cells. Similar induction by SCG was confirmed using mouse embryonic pancreatic explants. We also confirmed that the mechanisms of action by which SCG induced pancreatic endocrine differentiation included the inhibition of bone morphogenetic protein 4 signalling. CONCLUSIONS/INTERPRETATION: SCG improves the generation of pancreatic endocrine cells from multiple hiPSC/hESC lines and mouse embryonic pancreatic explants by facilitating the differentiation of endocrine precursors. This discovery will contribute to elucidating the mechanisms of pancreatic endocrine development and facilitate cost-effective generation of INS+ cells from hiPSCs/hESCs. DATA AVAILABILITY: The RNA sequencing data generated during the current study are available in the Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo ) with series accession number GSE89973.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cromolina Sódica/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pâncreas/citologia , Pâncreas/metabolismo , Transativadores/metabolismo
16.
Biochem Biophys Res Commun ; 486(3): 613-619, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28302489

RESUMO

Citrullinemia type 1 (CTLN1) is a urea cycle disorder (UCD) caused by mutations of the ASS1 gene, which is responsible for production of the enzyme argininosuccinate synthetase (ASS), and classically presented as life-threatening hyperammonemia in newborns. Therapeutic options are limited, and neurological sequelae may persist. To understand the pathophysiology and find novel treatments, induced pluripotent stem cells (iPSCs) were generated from a CTLN1 patient and differentiated into hepatocyte-like cells (HLCs). CTLN1-HLCs have lower ureagenesis, recapitulating part of the patient's phenotype. l-arginine, an amino acid clinically used for UCD treatment, improved this phenotype in vitro. Metabolome analysis revealed an increase in tricarboxylic acid (TCA) cycle metabolites in CTLN1, suggesting a connection between CTLN1 and the TCA cycle. This CTLN1-iPSC model improves the understanding of CTLN1 pathophysiology and can be used to pursue new therapeutic approaches.


Assuntos
Arginina/farmacologia , Argininossuccinato Sintase/deficiência , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citrulinemia/genética , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Argininossuccinato Sintase/genética , Sequência de Bases , Diferenciação Celular , Ciclo do Ácido Cítrico/genética , Citrulinemia/enzimologia , Citrulinemia/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Cariotipagem , Metaboloma , Camundongos , Camundongos Endogâmicos NOD , Modelos Biológicos , Cultura Primária de Células , Transdução de Sinais , Ureia/metabolismo
17.
Differentiation ; 92(5): 281-290, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27087651

RESUMO

Many reports have described methods that induce definitive endoderm (DE) cells from human pluripotent stem cells (hPSCs). However, it is unclear whether the differentiation propensity of these DE cells is uniform. This uncertainty is due to the different developmental stages that give rise to anterior and posterior DE from anterior primitive streak (APS). Therefore, these DE cell populations might be generated from the different stages of APS cells, which affect the DE cell differentiation potential. Here, we succeeded in selectively differentiating early and late APS cells from human induced pluripotent stem cells (hiPSCs) using different concentrations of CHIR99021, a small molecule Wnt/ß-catenin pathway activator. We also established novel differentiation systems from hiPSCs into three types of DE cells: anterior and posterior domains of anterior DE cells through early APS cells and posterior DE cells through late APS cells. These different DE cell populations could differentiate into distinct endodermal lineages in vitro, such as lung, liver or small intestine progenitors. These results indicate that different APS cells can produce distinct types of DE cells that have proper developmental potency and suggest a method to evaluate the quality of endodermal cell induction from hPSCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Endoderma/crescimento & desenvolvimento , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Intestino Delgado/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética
18.
Circ J ; 81(1): 110-118, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27867156

RESUMO

BACKGROUND: Approximately 10-20% of Kawasaki disease (KD) patients are resistant to intravenous immunoglobulin (IVIG) treatment. Further, these patients are at a particularly high risk of having coronary artery abnormalities. The mechanisms of IVIG resistance in KD have been analyzed using patient leukocytes, but not patient vascular endothelial cells (ECs). The present study clarifies the mechanisms of IVIG resistance in KD using an induced pluripotent stem cell (iPSC) disease model.Methods and Results:Dermal fibroblasts or peripheral blood mononuclear cells from 2 IVIG-resistant and 2 IVIG-responsive KD patients were reprogrammed by the episomal vector-mediated transduction of 6 reprogramming factors. KD patient-derived iPSCs were differentiated into ECs (iPSC-ECs). The gene expression profiles of iPSC-ECs generated from IVIG-resistant and IVIG-responsive KD patients were compared by RNA-sequencing analyses. We found that the expression ofCXCL12was significantly upregulated in iPSC-ECs from IVIG-resistant KD patients. Additionally, Gene Set Enrichment Analysis (GSEA) revealed that gene sets involved in interleukin (IL)-6 signaling were also upregulated. CONCLUSIONS: The first iPSC-based model for KD is reported here. Our mechanistic analyses suggest thatCXCL12, which plays a role in leukocyte transmigration, is a key molecule candidate for IVIG resistance and KD severity. They also indicate that an upregulation of IL-6-related genes may be involved in this pathogenesis.


Assuntos
Resistência a Medicamentos , Imunoglobulinas Intravenosas , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Síndrome de Linfonodos Mucocutâneos/metabolismo , Transcrição Gênica , Adolescente , Células Cultivadas , Quimiocina CXCL12/biossíntese , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Interleucina-6/biossíntese , Masculino , Síndrome de Linfonodos Mucocutâneos/patologia
19.
Curr Opin Organ Transplant ; 20(2): 171-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856179

RESUMO

PURPOSE OF REVIEW: Human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are potential unlimited cell sources for renal cells in regenerative medicine. This review highlights recent advance in the directed differentiation of human iPSCs into kidney lineages and discusses the remaining challenges to generate functional or mature renal cells from human iPSCs. RECENT FINDINGS: Recently, directed differentiation methods from human iPSCs/ESCs into embryonic renal progenitor cells, such as those included in metanephric mesenchyme and ureteric bud, that mimic embryonic development have been reported. These studies show the developmental potential of progenitor cells by forming renal tubule-like or glomerulus-like structures in vitro. However, it has not been verified whether the physiological functions of the induced progenitors are equivalent to their in-vivo counterparts. The establishment of definitive marker genes for kidney lineages and functional assay systems is essential for the verification. Such achievement is needed before kidney regeneration can provide cell replacement therapy, reliable disease models and elucidation of the mechanisms of kidney development. SUMMARY: In conclusion, this review outlines milestones in directed differentiation methods for functional renal cell types from human iPSCs toward clinical application and practical use.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Rim/fisiologia , Regeneração , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Embrionárias/citologia , Humanos , Rim/citologia
20.
Rinsho Byori ; 63(2): 265-73, 2015 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-26529981

RESUMO

In Japan, around 13 million adults have been estimated to suffer from chronic kidney disease (CKD), and more than 300 thousand patients with end-stage renal failure are receiving dialysis therapy, causing both medical and medicoeconomic problems. Regenerative medicine strategies using induced pluripotent stem (iPS) cells are among the candidate approaches to solve the problems. The mechanisms of kidney development and cell fate in the development of renal lineage cells have been elucidated using experimental animal models. Based on the knowledge of kidney development, intensive research has already been conducted to generate renal lineage cells from mouse embryonic stem (ES) cells, while few reports have been on studies using human iPS/ES cells. Recently, several research groups, including ours, have established methods to differentiate human iPS/ES cells into the intermediate mesoderm, an embryonic germ layer that gives rise to the kidney, and embryonic renal progenitors. Some reports also described the formation of three-dimensional renal tissues, such as renal tubules and glomeruli. Continued efforts are required to elucidate the mechanisms of kidney development and generate renal cells or tissues from human iPS cells, which could open up the new research avenues towards clinical application and practical use to overcome problems associated with kidney disease, such as human embryology, cell therapy, toxicology, drug discovery, and disease modeling.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células-Tronco Pluripotentes Induzidas , Insuficiência Renal Crônica/terapia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Rim/citologia , Rim/fisiologia , Regeneração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa