Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Cardiol Rep ; 26(6): 561-580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753291

RESUMO

PURPOSE OF REVIEW: Artificial intelligence (AI) is transforming electrocardiography (ECG) interpretation. AI diagnostics can reach beyond human capabilities, facilitate automated access to nuanced ECG interpretation, and expand the scope of cardiovascular screening in the population. AI can be applied to the standard 12-lead resting ECG and single-lead ECGs in external monitors, implantable devices, and direct-to-consumer smart devices. We summarize the current state of the literature on AI-ECG. RECENT FINDINGS: Rhythm classification was the first application of AI-ECG. Subsequently, AI-ECG models have been developed for screening structural heart disease including hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, pulmonary hypertension, and left ventricular systolic dysfunction. Further, AI models can predict future events like development of systolic heart failure and atrial fibrillation. AI-ECG exhibits potential in acute cardiac events and non-cardiac applications, including acute pulmonary embolism, electrolyte abnormalities, monitoring drugs therapy, sleep apnea, and predicting all-cause mortality. Many AI models in the domain of cardiac monitors and smart watches have received Food and Drug Administration (FDA) clearance for rhythm classification, while others for identification of cardiac amyloidosis, pulmonary hypertension and left ventricular dysfunction have received breakthrough device designation. As AI-ECG models continue to be developed, in addition to regulatory oversight and monetization challenges, thoughtful clinical implementation to streamline workflows, avoiding information overload and overwhelming of healthcare systems with false positive results is necessary. Research to demonstrate and validate improvement in healthcare efficiency and improved patient outcomes would be required before widespread adoption of any AI-ECG model.


Assuntos
Inteligência Artificial , Eletrocardiografia , Humanos , Eletrocardiografia/métodos , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia
2.
Clin Diabetes ; 39(2): 160-166, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33986569

RESUMO

To the best of our knowledge, there are no published data on the historical and recent use of CGM in clinical trials of pharmacological agents used in the treatment of diabetes. We analyzed 2,032 clinical trials of 40 antihyperglycemic therapies currently on the market with a study start date between 1 January 2000 and 31 December 2019. According to ClinicalTrials.gov, 119 (5.9%) of these trials used CGM. CGM usage in clinical trials has increased over time, rising from <5% before 2005 to 12.5% in 2019. However, it is still low given its inclusion in the American Diabetes Association's latest guidelines and known limitations of A1C for assessing ongoing diabetes care.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa