Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493359

RESUMO

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Assuntos
Alelos , Modelos Animais de Doenças , Proteínas Musculares , Músculo Esquelético , Mutação , Miopatias da Nemalina , Fenótipo , Sarcômeros , Peixe-Zebra , Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias da Nemalina/fisiopatologia , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252999

RESUMO

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Assuntos
Miofibrilas , Troponina T , Humanos , Miofibrilas/genética , Miofibrilas/patologia , Troponina T/genética , Troponina T/química , Actinas/genética , Mutação , Citoesqueleto de Actina/genética , Miosinas , Cálcio
3.
Am J Physiol Cell Physiol ; 325(1): C60-C68, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212548

RESUMO

Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.


Assuntos
Cálcio , Sarcômeros , Humanos , Sarcômeros/fisiologia , Contração Muscular/fisiologia , Debilidade Muscular , Miosinas/genética , Troponina
4.
Hum Mol Genet ; 30(14): 1305-1320, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-33909041

RESUMO

Nemaline myopathy, a disease of the actin-based thin filament, is one of the most frequent congenital myopathies. To date, no specific therapy is available to treat muscle weakness in nemaline myopathy. We tested the ability of tirasemtiv, a fast skeletal troponin activator that targets the thin filament, to augment muscle force-both in vivo and in vitro-in a nemaline myopathy mouse model with a mutation (H40Y) in Acta1. In Acta1H40Y mice, treatment with tirasemtiv increased the force response of muscles to submaximal stimulation frequencies. This resulted in a reduced energetic cost of force generation, which increases the force production during a fatigue protocol. The inotropic effects of tirasemtiv were present in locomotor muscles and, albeit to a lesser extent, in respiratory muscles, and they persisted during chronic treatment, an important finding as respiratory failure is the main cause of death in patients with congenital myopathy. Finally, translational studies on permeabilized muscle fibers isolated from a biopsy of a patient with the ACTA1H40Y mutation revealed that at physiological Ca2+ concentrations, tirasemtiv increased force generation to values that were close to those generated in muscle fibers of healthy subjects. These findings indicate the therapeutic potential of fast skeletal muscle troponin activators to improve muscle function in nemaline myopathy due to the ACTA1H40Y mutation, and future studies should assess their merit for other forms of nemaline myopathy and for other congenital myopathies.


Assuntos
Actinas , Miopatias da Nemalina , Actinas/genética , Animais , Humanos , Imidazóis , Camundongos , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/tratamento farmacológico , Miopatias da Nemalina/genética , Pirazinas/uso terapêutico
6.
Hum Mutat ; 43(12): 1860-1865, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335629

RESUMO

KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.


Assuntos
Cardiomiopatias , Proteínas Musculares , Animais , Humanos , Camundongos , Arritmias Cardíacas , Cardiomiopatias/genética , Morte Súbita Cardíaca/etiologia , Desfibriladores Implantáveis , Proteínas Musculares/genética , Volume Sistólico/fisiologia , Função Ventricular Esquerda
7.
Crit Care Med ; 50(2): 192-203, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100192

RESUMO

OBJECTIVES: Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation. DESIGN: Randomized clinical trial. SETTING: Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS: Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS: In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS: Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS: Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.


Assuntos
Diafragma/metabolismo , Pulmão/metabolismo , Respiração Artificial/normas , Trabalho Respiratório/fisiologia , Diafragma/fisiopatologia , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/prevenção & controle , Insuficiência Respiratória/terapia , Trabalho Respiratório/efeitos dos fármacos
8.
Muscle Nerve ; 66(2): 197-202, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583147

RESUMO

INTRODUCTION/AIMS: Diaphragm ultrasound is increasingly used in the diagnosis of diaphragm dysfunction and to guide respiratory management in patients with neuromuscular disorders and those who are critically ill. However, the association between diaphragm ultrasound variables and demographic factors like age, sex, and body mass index (BMI) are understudied. Such relationships are important for correct interpretation of normative values and comparison with selected patients groups. The aim of this study was to determine the associations between diaphragm ultrasound variables and subject characteristics. METHODS: B-mode ultrasound was used to image the diaphragm at the zone of apposition in 83 healthy subjects. Diaphragm thickness at resting end-expiration (Tend-exp ), diaphragm thickness at maximal end-inspiration (Tmax-insp ), diaphragm thickening ratio (Tmax-insp /Tend-exp ), and diaphragm echogenicity were measured. Multivariate linear regression was used to explore the associations between diaphragm ultrasound variables and subject characteristics. RESULTS: Tend-exp , Tmax-insp , and thickening ratio do not change with age whereas diaphragm echogenicity increases with age. The thickening ratio had a weak negative association with BMI, while Tend-exp was positively associated with BMI. Men had a larger Tend-exp and Tmax-insp than women (Tend-exp 1.6 ± 0.5 and 1.4 ± 0.3 mm; p = .011, Tmax-insp 3.8 ± 1.0 and 3.2 ± 0.9 mm; p = .004), but similar thickening ratios. DISCUSSION: Diaphragm thickness, thickening, and echogenicity measured with ultrasound are associated with factors such as age, BMI, and sex. Therefore, subject characteristics should be considered when interpreting diaphragm ultrasound measurements. In the absence of normative values, matched control groups are a prerequisite for research and in clinical practice.


Assuntos
Índice de Massa Corporal , Diafragma , Ultrassonografia , Fatores Etários , Diafragma/diagnóstico por imagem , Diafragma/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Respiração , Fatores Sexuais , Ultrassonografia/métodos
9.
Anesthesiology ; 136(5): 749-762, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320344

RESUMO

BACKGROUND: The effect of fluid management strategies in critical illness-associated diaphragm weakness are unknown. This study hypothesized that a liberal fluid strategy induces diaphragm muscle fiber edema, leading to reduction in diaphragmatic force generation in the early phase of experimental pediatric acute respiratory distress syndrome in lambs. METHODS: Nineteen mechanically ventilated female lambs (2 to 6 weeks old) with experimental pediatric acute respiratory distress syndrome were randomized to either a strict restrictive fluid strategy with norepinephrine or a liberal fluid strategy. The fluid strategies were maintained throughout a 6-h period of mechanical ventilation. Transdiaphragmatic pressure was measured under different levels of positive end-expiratory pressure (between 5 and 20 cm H2O). Furthermore, diaphragmatic microcirculation, histology, inflammation, and oxidative stress were studied. RESULTS: Transdiaphragmatic pressures decreased more in the restrictive group (-9.6 cm H2O [95% CI, -14.4 to -4.8]) compared to the liberal group (-0.8 cm H2O [95% CI, -5.8 to 4.3]) during the application of 5 cm H2O positive end-expiratory pressure (P = 0.016) and during the application of 10 cm H2O positive end-expiratory pressure (-10.3 cm H2O [95% CI, -15.2 to -5.4] vs. -2.8 cm H2O [95% CI, -8.0 to 2.3]; P = 0.041). In addition, diaphragmatic microvessel density was decreased in the restrictive group compared to the liberal group (34.0 crossings [25th to 75th percentile, 22.0 to 42.0] vs. 46.0 [25th to 75th percentile, 43.5 to 54.0]; P = 0.015). The application of positive end-expiratory pressure itself decreased the diaphragmatic force generation in a dose-related way; increasing positive end-expiratory pressure from 5 to 20 cm H2O reduced transdiaphragmatic pressures with 27.3% (17.3 cm H2O [95% CI, 14.0 to 20.5] at positive end-expiratory pressure 5 cm H2O vs. 12.6 cm H2O [95% CI, 9.2 to 15.9] at positive end-expiratory pressure 20 cm H2O; P < 0.0001). The diaphragmatic histology, markers for inflammation, and oxidative stress were similar between the groups. CONCLUSIONS: Early fluid restriction decreases the force-generating capacity of the diaphragm and diaphragmatic microcirculation in the acute phase of pediatric acute respiratory distress syndrome. In addition, the application of positive end-expiratory pressure decreases the force-generating capacity of the diaphragm in a dose-related way. These observations provide new insights into the mechanisms of critical illness-associated diaphragm weakness.


Assuntos
Diafragma , Síndrome do Desconforto Respiratório , Animais , Estado Terminal , Feminino , Humanos , Inflamação , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Ovinos
10.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555335

RESUMO

Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.


Assuntos
Transtornos Respiratórios , Respiração Artificial , Camundongos , Animais , Conectina/metabolismo , Respiração Artificial/efeitos adversos , Diafragma/metabolismo , Debilidade Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA
11.
Am J Respir Crit Care Med ; 202(7): 950-961, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516052

RESUMO

Mechanical ventilation can cause acute diaphragm atrophy and injury, and this is associated with poor clinical outcomes. Although the importance and impact of lung-protective ventilation is widely appreciated and well established, the concept of diaphragm-protective ventilation has recently emerged as a potential complementary therapeutic strategy. This Perspective, developed from discussions at a meeting of international experts convened by PLUG (the Pleural Pressure Working Group) of the European Society of Intensive Care Medicine, outlines a conceptual framework for an integrated lung- and diaphragm-protective approach to mechanical ventilation on the basis of growing evidence about mechanisms of injury. We propose targets for diaphragm protection based on respiratory effort and patient-ventilator synchrony. The potential for conflict between diaphragm protection and lung protection under certain conditions is discussed; we emphasize that when conflicts arise, lung protection must be prioritized over diaphragm protection. Monitoring respiratory effort is essential to concomitantly protect both the diaphragm and the lung during mechanical ventilation. To implement lung- and diaphragm-protective ventilation, new approaches to monitoring, to setting the ventilator, and to titrating sedation will be required. Adjunctive interventions, including extracorporeal life support techniques, phrenic nerve stimulation, and clinical decision-support systems, may also play an important role in selected patients in the future. Evaluating the clinical impact of this new paradigm will be challenging, owing to the complexity of the intervention. The concept of lung- and diaphragm-protective ventilation presents a new opportunity to potentially improve clinical outcomes for critically ill patients.


Assuntos
Diafragma/lesões , Atrofia Muscular/prevenção & controle , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Consenso , Cuidados Críticos , Sistemas de Apoio a Decisões Clínicas , Terapia por Estimulação Elétrica , Oxigenação por Membrana Extracorpórea , Humanos , Atrofia Muscular/etiologia , Nervo Frênico , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
12.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502093

RESUMO

The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.


Assuntos
Miotonia Congênita/metabolismo , Troponina/metabolismo , Animais , Humanos , Contração Muscular , Miotonia Congênita/genética , Miotonia Congênita/fisiopatologia , Sarcômeros/metabolismo , Troponina/química , Troponina/genética
13.
J Muscle Res Cell Motil ; 41(1): 103-124, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31982973

RESUMO

Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin's role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin's involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.


Assuntos
Proteínas Musculares/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Humanos , Proteínas Musculares/farmacologia
14.
Am J Physiol Cell Physiol ; 317(2): C167-C176, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042425

RESUMO

The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. Only during controlled mechanical ventilation, as occurs during thoracic surgery and in the intensive care unit, is mechanical loading of the diaphragm arrested. Animal studies indicate that the diaphragm is highly sensitive to unloading, causing rapid muscle fiber atrophy and contractile weakness; unloading-induced diaphragm atrophy and contractile weakness have been suggested to contribute to the difficulties in weaning patients from ventilator support. The molecular triggers that initiate the rapid unloading atrophy of the diaphragm are not well understood, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere, titin is considered to play an important role in the stress-response machinery. Titin is a giant protein that acts as a mechanosensor regulating muscle protein expression in a sarcomere strain-dependent fashion. Thus titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin and its biomechanical sensing and signaling might be involved in the development of mechanical unloading-induced diaphragm weakness.


Assuntos
Conectina/metabolismo , Diafragma/metabolismo , Pneumopatias/metabolismo , Mecanotransdução Celular , Contração Muscular , Força Muscular , Debilidade Muscular/metabolismo , Atrofia Muscular/metabolismo , Animais , Diafragma/patologia , Diafragma/fisiopatologia , Humanos , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pneumopatias/terapia , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Respiração Artificial
15.
J Physiol ; 597(17): 4521-4531, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314138

RESUMO

Titin functions as a molecular spring, and cardiomyocytes are able, through splicing, to control the length of titin. We hypothesized that together with diastolic [Ca2+ ], titin-based stretch pre-activates cardiomyocytes during diastole and is a major determinant of force production in the subsequent contraction. Through this mechanism titin would play an important role in active force development and length-dependent activation. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) result in expression of large, highly compliant titin isoforms. We measured single cardiomyocyte work loops that mimic the cardiac cycle in wild-type (WT) and heterozygous (HET) RBM20-deficient rats. In addition, we studied the role of diastolic [Ca2+ ] in membrane-permeabilized WT and HET cardiomyocytes. Intact cardiomyocytes isolated from HET left ventricles were unable to produce normal levels of work (55% of WT) at low pacing frequencies, but this difference disappeared at high pacing frequencies. Length-dependent activation (force-sarcomere length relationship) was blunted in HET cardiomyocytes, but the force-end-diastolic force relationship was not different between HET and WT cardiomyocytes. To delineate the effects of diastolic [Ca2+ ] and titin pre-activation on force generation, measurements were performed in detergent-permeabilized cardiomyocytes. Cardiac twitches were simulated by transiently exposing permeabilized cardiomyocytes to 2 µm Ca2+ . Increasing diastolic [Ca2+ ] from 1 to 80 nm increased force development twofold in WT. Higher diastolic [Ca2+ ] was needed in HET. These findings are consistent with our hypothesis that pre-activation increases active force development. Highly compliant titin allows cells to function at higher diastolic [Ca2+ ].


Assuntos
Cálcio/metabolismo , Conectina/metabolismo , Diástole/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Heterozigoto , Masculino , Proteínas Musculares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sarcômeros/fisiologia
16.
Ann Neurol ; 83(2): 269-282, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29328520

RESUMO

OBJECTIVE: Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS: To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS: Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION: Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.


Assuntos
Actinas/genética , Contração Muscular/fisiologia , Debilidade Muscular/genética , Miopatias Congênitas Estruturais/fisiopatologia , Sarcômeros/patologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Sarcômeros/fisiologia , Adulto Jovem
18.
Am J Respir Crit Care Med ; 198(4): 472-485, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29578749

RESUMO

RATIONALE: Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES: To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS: We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS: PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS: Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.


Assuntos
Diafragma/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Respiração com Pressão Positiva/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Diafragma/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/diagnóstico por imagem , Ratos , Ultrassonografia
19.
Am J Respir Crit Care Med ; 196(12): 1544-1558, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28787181

RESUMO

RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES: We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS: To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS: Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS: Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.


Assuntos
Diafragma/fisiopatologia , Mitocôndrias , Debilidade Muscular/fisiopatologia , Atrofia Muscular/fisiopatologia , Estresse Oxidativo , Adulto , Idoso , Biópsia , Estado Terminal , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Respiração Artificial , Adulto Jovem
20.
Hum Mol Genet ; 24(22): 6278-92, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26307083

RESUMO

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.


Assuntos
Fibras Musculares de Contração Lenta/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Miosinas/metabolismo , Tropomiosina/genética , Actinas/genética , Actinas/metabolismo , Adolescente , Adulto , Cálcio/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Atrofia Muscular/genética , Doenças Musculares/genética , Mutação , Miosinas/genética , Isoformas de Proteínas , Tropomiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa