Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608382

RESUMO

Manure is one of the main sources of heavy metal (HM) pollution on farmlands. It has become the focus of global ecological research because of its potential threat to human health and the sustainability of food systems. Soil pH and organic matter are improved by manure and play pivotal roles in determining soil HM behavior. Geochemical modeling has been widely used to assess and predict the behavior of soil HMs; however, there remains a research gap in manure applications. In this study, a geochemical model (LeachXS) coupled with a pH-dependent leaching test with continuously simulations over a broad pH range was used to determine the effects and pollution risks of pig or cattle manure separate application on soil HMs distribution. Both pig and cattle manure applications led to soil pH reduction in alkaline soils and increased organic matter content. Pig manure application resulted in a potential 90.5-156.0 % increase in soil HM content. Cattle manure did not cause significant HM contamination. The leaching trend of soil HMs across treatments exhibited a V-shaped change, with the lowest concentration at pH = 7, gradually increasing toward strong acids and bases. The dissolved organic matter-bound HM content directly increased the HM availability, especially for Cu (up to 8.4 %) after pig manure application. However, more HMs (Cr, Cu, Zn, Ni) were in the particulate organic matter-bound state than in other solid phases (e.g., Fe-Al(hydr) oxides, clay minerals), which inhibited the HMs leaching by more than 19.3 % after cattle manure application. Despite these variations, high HM concentrations introduced by pig manure raised the soil contamination risk, potentially exceeding 40 times at pH ±1. When manure is returned to the field, reducing its HM content and mitigating possible pollution is necessary to realize the healthy and sustainable development of circular agriculture.


Assuntos
Esterco , Metais Pesados , Poluentes do Solo , Solo , Esterco/análise , Poluentes do Solo/análise , Metais Pesados/análise , Animais , Bovinos , Solo/química , Suínos , Concentração de Íons de Hidrogênio , Monitoramento Ambiental
2.
J Environ Manage ; 357: 120727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555844

RESUMO

The urgent concerns of controlling water body eutrophication and the alleviating phosphorus shortage have led to an urgent need for action. The removal of phosphate from polluted waters and its reuse are essential for the prevention of eutrophication and for the sustainable utilization of phosphate resources. In this study, modified attapulgite with different Ca:Mg molar ratios was synthesized to facilitate the recovery of phosphate, with subsequent use of soil fertilizer. Ca-Mg modified attapulgite with the optimal ratio (ACM-5:3) exhibited an exceptional adsorption quality, achieving a maximum adsorption capacity of 63.2 mg/g. The pseudo-second-order model and Langmuir model could well describe the adsorption kinetics and isotherms, respectively. The adsorption mechanism analyses suggested that the interaction between ACM-5:3 and phosphate depended mainly on ion exchange and electrostatic attraction. Moreover, phosphate-laden-ACM-5:3 demonstrated a significant potential as a phosphorus-releasing fertilizer. It could promote corn growth by ensuring a continuous supply of phosphorus and minimizing phosphorus runoff losses. The above results suggested that ACM-5:3 was a potential adsorbent for efficient phosphate removal and recovery.


Assuntos
Fosfatos , Compostos de Silício , Poluentes Químicos da Água , Fertilizantes , Compostos de Magnésio , Fósforo , Adsorção , Cinética , Poluentes Químicos da Água/análise
3.
Environ Res ; 222: 115362, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709870

RESUMO

Sweet sorghum is a high-yield crop with strong resistance, which has the potential to support the development of the forage farming industry in China where vast salt-affected lands are potentially arable. Nutrient management is imperative for sweet sorghum growing on salt-affected lands. Although nitrogen (N) synthetic fertilizers have long been recognized as a key factor for increasing crop yields, their effects on sweet sorghum cultivation are under debate. Consequently, this study integrated the current available observations of yield (n = 255) and partial factor productivity of nitrogen (NPFP, n = 242) of sweet sorghum in salt-affected lands, which included both inland (n = 189) and coastal (n = 66) areas. We quantitatively analyzed the effects of climatic, soil properties and management measures on biomass yield and NPFP of sweet sorghum, comparing the differences between inland and coastal salt-affected lands. We found that average biomass yield and NPFP of sweet sorghum in coastal areas were 19,082.48 ± 8262.75 kg/ha and 107.29 ± 51.44 kg/kg respectively, both significantly lower than that in inland areas (p < 0.05). The N application rate did not have significant promoting effect on the biomass yield of sweet sorghum in inland salt-affected areas (p > 0.05), whereas in coastal salt-affected areas, N application significantly increased the biomass yield of sweet sorghum. Increasing soil organic matter content could promote NPFP in inland areas. The recommended N application rate for inland salt-affected and coastal salt-affected areas were 100 kg/ha and 150 kg/ha respectively. The results indicate that it is crucial to apply nutrient management measures based on the local climatic and soil conditions, since the causes of salinity differ in coastal and inland salt-affected lands. More systematic field studies are required in the future to optimize the management of water and nutrients for sweet sorghum planting in salt-affected lands.


Assuntos
Sorghum , Solo , Cloreto de Sódio/farmacologia , Nitrogênio , China
4.
J Environ Manage ; 348: 119070, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820432

RESUMO

Ecological restoration practices have been widely adopted to increase soil carbon stocks by improving soil organic carbon (SOC). However, the effects of these practices on the other important soil carbon component, soil inorganic carbon (SIC), remain unclear. To address this, a meta-analysis based on 45 publications and 37 sites was conducted to quantitatively assess the dynamic changes in SIC stocks due to typical restoration practices, including conversion of cropland to forest (C-F), cropland to grassland (C-G), desert to cropland (D-C), conservation agriculture (CA), and desert to forest (D-F). Results showed that, among the restoration practices increasing the SOC stocks, the SIC stocks decreased after the C-F (-34.7%) and C-G (-15.8%) conversions and CA (-6.8%), but increased after the conversion of D-C (2.6%) and D-F (46.9%). Additionally, in terms of recovery duration, the negative effect of C-G on SIC stocks may vanish with increased recovery duration, whereas SIC stocks showed a prominent increase initially after CA and then decreased over time; the response to D-F conversion of SIC stocks remained consistently positive over time. Furthermore, the non-synergistic changes with SIC and SOC could be due to variations in edaphic factors, while the effects edaphic factors on SIC stocks were different under various ecological restoration practices. Among all the impact factors, mean annual temperature, initial SIC stocks, and types of ecological restoration practice, were the most crucial factors explaining the variation in SIC stocks with ecological restoration. Collectively, the results highlight that the change in SIC stocks is asynchronous with the increase in SOC stocks in space and time after ecological restoration, further indicating that changes in SIC stocks should be paid more attention when assessing and predicting carbon sequestration following various ecological restoration practices.


Assuntos
Carbono , Solo , Agricultura/métodos , Florestas , Sequestro de Carbono
5.
Allergy ; 76(2): 551-561, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040337

RESUMO

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Portador Sadio/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/métodos , Portador Sadio/sangue , Portador Sadio/diagnóstico , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade
6.
Proc Natl Acad Sci U S A ; 115(16): 4045-4050, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666318

RESUMO

China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha-1 in 1980 to 32.9 Mg C ha-1 in 2011, representing a net increase of 140 kg C ha-1 year-1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.


Assuntos
Agricultura/métodos , Sequestro de Carbono , Carbono/análise , Conservação dos Recursos Naturais/legislação & jurisprudência , Compostos Orgânicos/análise , Políticas , Solo/química , Agricultura/economia , Agroquímicos/química , China , Compostagem , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/química , Fazendas , Atividades Humanas , Humanos , Dispersão Vegetal , Raízes de Plantas/química , Caules de Planta/química , Plantas/química , Mudança Social , Microbiologia do Solo
7.
J Cell Physiol ; 235(10): 6605-6614, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31985036

RESUMO

Endoplasm reticulum stress and inflammation response have been found to be linked to cerebral ischemia-reperfusion (IR) injury. Sphingosine kinase 1 (SPHK1) has been reported to be a novel endoplasm reticulum regulator. The aim of our study is to figure out the role of SPHK1 in cerebral IR injury and verify whether it has an ability to regulate inflammation and endoplasm reticulum stress. Hydrogen peroxide was used to induce cerebral IR injury. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blots, and immunofluorescence were used to measure the alterations of cell viability, inflammation response, and endoplasm reticulum stress. The results demonstrated that after exposure to hydrogen peroxide, cell viability was reduced whereas SPHK1 expression was significantly elevated. Knockdown of SPHK1 attenuated hydrogen peroxide-mediated cell death and reversed cell viability. Our data also demonstrated that SPHK1 deletion reduced endoplasm reticulum stress and alleviated inflammation response in hydrogen peroxide-treated cells. In addition, we also found that SHPK1 modulated endoplasm reticulum stress and inflammation response to through the NF-κB signaling pathway. Inhibition of NF-κB signaling pathway has similar results when compared with the cells with SPHK1 deletion. Altogether, our results demonstrated that SPHK1 upregulation, induced by hydrogen peroxide, is responsible for cerebral IR injury through inducing endoplasm reticulum stress and inflammation response in a manner working through the NF-κB signaling pathway. This finding provides new insight into the molecular mechanism to explain the neuron death induced by cerebral IR injury.


Assuntos
Isquemia Encefálica/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , NF-kappa B/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inflamação/metabolismo , Camundongos
8.
Neuroimmunomodulation ; 26(3): 119-128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31167206

RESUMO

BACKGROUND: Glioma is identified as a broad category of brain and spinal cord tumors. MiR-362-3p is important in regulating the genesis of different cancers; however, the mechanism of miR-362-3p in the progression of glioma remains largely unknown. OBJECTIVES: This study aimed to elucidate pathobiological functions of miR-362-3p by targeting PAX3 in glioma. METHOD: qRT-PCR and western blotting were used to examine miR-362-3p and PAX3 expression in glioma tissues and cells. CCK-8 assay and transwell assays were used to examine the functions of miR-362-3p on human glioma. Two bioinformatics analysis software and luciferase reporter assay were performed to analyze the relationship between miR-362-3p and PAX3. RESULTS: MiR-362-3p was downregulated, and PAX3 was upregulated in glioma tissues and cells. Functional assays revealed that ectopic expression of miR-362-3p inhibited glioma cell proliferation and migration. Further, PAX3 was confirmed as direct target gene of miR-362-3p, and downregulation of PAX3 reversed the suppressive effects of miR-362-3p in glioma. In addition, miR-362-3p also exhibited suppressive effect on epithelial-mesenchymal transition and Wnt/ß-catenin pathway. CONCLUSIONS: MiR-362-3p downregulation or PAX3 overexpression predicted poor prognosis in glioma. MiR-362-3p played a role in the suppressive effect on glioma by targeting PAX3 through suppressing Wnt/ß-catenin pathway.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , MicroRNAs/metabolismo , Fator de Transcrição PAX3/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
9.
Glob Chang Biol ; 24(3): 987-1000, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29035007

RESUMO

Agricultural soils are widely recognized to be capable of carbon sequestration that contributes to mitigating CO2 emissions. To better understand soil organic carbon (SOC) stock dynamics and its driving and controlling factors corresponding with a period of rapid agronomic evolution from the 1980s to the 2010s in the North China Plain (NCP), we collected data from two region-wide soil sampling campaigns (in the 1980s and 2010s) and conducted an analysis of the controlling factors using the random forest model. Between the 1980s and 2010s, environmental (i.e. soil salinity/fertility) and societal (i.e. policy/techniques) factors both contributed to adoption of new management practices (i.e. chemical fertilizer application/mechanization). Results of our work indicate that SOC stocks in the NCP croplands increased significantly, which also closely related to soil total nitrogen changes. Samples collected near the surface (0-20 cm) and deeper (20-40 cm) both increased by an average of 9.4 and 5.1 Mg C ha-1 , respectively, which are equivalent to increases of 73% and 56% compared with initial SOC stocks in the 1980s. The annual carbon sequestration amount in surface soils reached 10.9 Tg C year-1 , which contributed an estimated 43% of total carbon sequestration in all of China's cropland on just 27% of its area. Successful desalinization and the subsequent increases in carbon (C) inputs, induced by agricultural projects and policies intended to support crop production (i.e. reconstruction of low yield farmland, and agricultural subsidies), combined with improved cultivation practices (i.e. fertilization and straw return) since the early 1980s were the main drivers for the SOC stock increase. This study suggests that rehabilitation of NCP soils to reduce salinity and increase crop yields have also served as a pathway for substantial soil C sequestration.


Assuntos
Agricultura/métodos , Sequestro de Carbono , Solo/química , Carbono/análise , China , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Nitrogênio/química , Nitrogênio/metabolismo
10.
Environ Monit Assess ; 186(8): 5185-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24715617

RESUMO

A thorough understanding of groundwater recharge source, particularly its rate, is usually a prerequisite for effective water resources management. In this paper, we report the impact of Yellow River water seepage from the North Henan Plain, using both hydrogeochemical and stable isotopic analysis data. Seven Yellow River water samples, 10 groundwater samples from a river-parallel transect, and 36 groundwater samples from four different perpendicular transects to the Yellow River in the western, middle, and eastern plain were collected and analyzed. It inferred that cation exchange of Ca(2+) and/or Mg(2+) for Na(+) occurred in groundwaters because of the dissolution of carbonate rocks. The hydrogeochemical results indicate that western piedmont lateral groundwater and the Yellow River are both important sources of groundwater recharge for the western transect of the North Henan Plain, while the former is a greater recharge source for the middle transect, and the latter is a greater recharge source for the eastern transect. Stable isotope data support Yellow River water incursion into the groundwater. The approximate distance (based on chloride concentration) from the Yellow River to border of the impact zone is17.43-23.40 km in the western plain, 52.46 km in the middle plain, and 49.82 km in the eastern plain.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Isótopos/análise , Carbonatos/análise , China , Cloretos/análise , Rios , Movimentos da Água
11.
Foods ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38397553

RESUMO

Naringin is one of the common flavonoids in grapefruit, which has anti-cancer, antioxidant, and anti-inflammatory activities. However, its poor solubility limits its wide application. Therefore, the aim of this study is to investigate the anti-inflammatory effect of naringin combined with chitooligosaccharides with good biocompatibility by constructing a mouse model of systemic inflammatory response syndrome (SIRS). The results showed that the naringin-chitooligosaccharide (NG-COS) complex significantly inhibited lipopolysaccharide (LPS)-induced weight loss, reduced food intake, tissue inflammatory infiltration, and proinflammatory cytokines IL-6, TNF-α, INF-γ, and IL-1ß levels. The complex also significantly affected the content of malondialdehyde and the activities of MPO, SOD, and GSH in the liver, spleen, lungs, and serum of mice with systemic inflammation. In addition, NG-COS significantly inhibited the mRNA expression of inflammatory factors in the TLR4/NF-κB signaling pathway. Principal component analysis showed that the complexes could inhibit LPS-induced systemic inflammation in mice, and the effect was significantly better than that of naringin and chitooligosaccharides alone. This study explored the synergistic effects of chitosan and naringin in reducing inflammation and could contribute to the development of novel biomedical interventions.

12.
Huan Jing Ke Xue ; 44(5): 2661-2670, 2023 May 08.
Artigo em Zh | MEDLINE | ID: mdl-37177939

RESUMO

Excess sludge is rich in organic matter but also contains heavy metals, pathogens, and harmful substances. In this study, hydroaluminite and excess sludge were used as raw materials to reduce the risk of heavy metals leaching from sludge by coagulation and co-pyrolysis, and its phosphate adsorption characteristics were studied. The results showed that the leaching amount of Zn, Cu, Cd, and Ni in sludge biochar decreased with the increase in the hydroaluminite dosage. The sludge biochar composite (1:1HB800), prepared by co-pyrolysis of hydroaluminite and excess sludge with a mass ratio of 1:1 as well as rich in calcium and aluminum, had lowest leaching risk of heavy metals and showed the high adsorption capacity for phosphate. The process could be fitted by the Langmuir adsorption isotherm (R2=0.93), and the maximum phosphate adsorption capacity at 25℃ was 51.38 mg·g-1. The pseudo second-order kinetic model could well describe the adsorption process of 1:1HB800 for high concentration phosphate, and its adsorption rate was controlled by both surface adsorption and particle diffusion. Compared with that in the neutral solution, 1:1HB800 had better phosphate capacity in the acidic and alkaline aqueous solutions, which was related to the leaching amount of calcium/aluminum in 1:1HB800 and the existence form of aluminum under the different pH conditions. FTIR, XRD, SEM, zero potential point, and Ca2+/Al3+ leaching experiments indicated that the main adsorption mechanisms for phosphate by 1:1HB800 were co-precipitation (interaction between Ca2+/Al3+ and phosphate), ligand exchange (hydroxyl), and electrostatic interaction. Therefore, 1:1HB800 can provide a feasible alternative for the removal of phosphate in aqueous solutions and also provide a potential new method for the resource utilization and harmless treatment of excess sludge.

13.
iScience ; 26(6): 106798, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37235053

RESUMO

Ensuring global food security and environmental sustainability is dependent upon the contribution of the world's hundred million smallholder farms, but the contributions of smallholder farms to global agricultural greenhouse gas (GHG) emissions have been understudied. We developed a localized agricultural life cycle assessment (LCA) database to calculate GHG emissions and made the first extensive assessment of the smallholder farms' GHG emission reduction potentials by coupling crop and livestock production (CCLP), a redesign of current practices toward sustainable agriculture in China. CCLP can reduce the GHG emission intensity by 17.67%, with its own feed and manure returning to the field as an essential path. Scenario analysis verified that greater GHG emission reduction (28.09%-41.32%) will be achieved by restructuring CCLP. Therefore, this mixed farming is a mode with broader benefits to provide sustainable agricultural practices for reducing GHG emissions fairly.

14.
J Sci Food Agric ; 92(5): 1046-53, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131260

RESUMO

BACKGROUND: To diagnose problems that threaten regional sustainability and to devise appropriate treatment measures in China's agro-ecosystems, a study was carried out to quantify the nitrogen (N) flow in China's typical agro-ecosystems and develop potential solutions to the increasing environmental N load. RESULTS: The analysis showed that owing to human activity in the agro-ecosystems of Changjiang River Basin the mean total input of anthropogenic reactive N (i.e. chemical fertiliser, atmospheric deposition and bio-N fixation) increased from 4.41 × 10(9) kg-N in 1980 to 7.61 × 10(9) kg-N in 1990 and then to 1.43 × 10(10) kg-N in 2000, with chemical fertiliser N being the largest contributor to N load. Field investigation further showed that changes in human behaviour and rural urbanisation have caused rural communities to become more dependent on chemical fertilisers. In rural regions, around 4.17 kg-N of per capita annual potential N load as excrement was returned to farmlands and 1.38 kg-N directly discharged into river systems, while in urbanised regions, around 1.00 kg-N of per capita annual potential N load as excrement was returned to farmlands and 5.62 kg-N discharged into river systems in urban areas. CONCLUSION: The findings of the study suggest that human activities have significantly altered the N cycle in agro-ecosystems of China. With high population density and scarce per capita water resources, non-point source pollution from agro-ecosystems continues to put pressure on aquatic ecosystems. Increasing the rate of organic matter recycling and fertiliser efficiency with limited reliance on chemical fertilisers might yield tremendous environmental benefits.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Fertilizantes , Ciclo do Nitrogênio , Nitrogênio/análise , Urbanização , Poluição da Água , Atmosfera , Comportamento , China , Ecossistema , Fezes , Humanos , Nitrogênio/metabolismo , Fixação de Nitrogênio , Densidade Demográfica , Rios
15.
Animals (Basel) ; 12(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35681910

RESUMO

Ecological pig-raising systems (EPRSs) differ from conventional breeding systems, focusing more on environmental consequences, human health, and food safety during production processes. Thus productions from EPRSs have undergone significant development in China. Thus far, adding plant fiber sources (e.g., sweet potato leaves, maize or wheat straw, potato, alfalfa, and vinasse) to feed has become a common practice to reduce the cost during the fattening period. Under such a context, it is necessary to choose the precision EPRS diet components and fattening period with low environmental consequences and high economic benefits. This study set up a database via pig growth models to predict environmental and economic performance based on two trials with 0%, 10%, 40%, 60%, and 80% maize silage (dry weight) added to the feed. A continuous curve about plant fiber concentration was built through the generated database. Our results showed that, with increased plant fiber concentration, the environmental performance of the EPRSs exhibited an "increase-decrease-increase" trend, and the economic performance firstly increased and then decreased. The best maize silage added percentages of emergy yield ratio (EYR), environmental loading ratio (ELR), unit emergy value (UEV), and emergy sustainability index (ESI), and the economic profits were 19.0%, 34.3%, 24.6%, 19.9%, and 18.0%, respectively. Besides, the 19.9% sun-dried maize silage added to the feed with a 360-day raising period had the best balance for environmental impact and economic performance. At the balance point, the performances of EYR, ELR, UEV, ESI, and the economic profit were only 0.04%, 3.0%, 0.8%, 0.0%, and 0.1%, respectively, lower than their maximum values. Therefore, we recommended the feed added 20% sun-dried maize silage is suitable for practical pig raising systems.

16.
Environ Sci Pollut Res Int ; 29(59): 89570-89584, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852743

RESUMO

Phosphorus is one of the main pollutants that cause water pollution, and phosphorus is a one-way cycle in the environment, and phosphorus resources will face exhaustion in the next 100 years. Therefore, the recovery and reuse of phosphorus resources have become very important. This article presents a study concerning the removal of phosphate from an aqueous solution by using a calcium-rich biochar prepared by pyrolysis of crab shells. The experimental results show that the optimal pyrolysis temperature of crab shells is 500 â„ƒ, named CSB500, which is more conducive to the adsorption of phosphate. The process of phosphate adsorption conforms to the quasi-second-order kinetics and Freundlich model. On the other hand, the Langmuir isotherm model shows that when the reaction conditions are 25 â„ƒ, 30 â„ƒ, and 35 â„ƒ, the maximum adsorption capacity of CSB500 for phosphate is 164.32 mg/g, 170.47 mg/g, and 209.35 mg/g, respectively. The characterization results show that the overall structure of CSB500 is good, the specific surface area is large, and the main component is calcium carbonate. The potential mechanisms of action in the process of phosphate adsorption may be electrostatic attraction, surface chemical precipitation, ligand exchange, and complexation.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Pirólise , Fosfatos/química , Cálcio , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fósforo/química , Adsorção , Água , Cinética
17.
J Adv Res ; 36: 133-145, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35116173

RESUMO

Introduction: The COVID-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for early predicting the outcome of COVID-19. Growing evidences have revealed that SARS-CoV-2 specific antibodies evolved with disease progression and severity in COIVD-19 patients. Objectives: We assumed that antibodies may serve as biomarkers for predicting the clinical outcome of hospitalized COVID-19 patients on admission. Methods: By taking advantage of a newly developed SARS-CoV-2 proteome microarray, we surveyed IgG responses against 20 proteins of SARS-CoV-2 in 1034 hospitalized COVID-19 patients on admission and followed till 66 days. The microarray results were further correlated with clinical information, laboratory test results and patient outcomes. Cox proportional hazards model was used to explore the association between SARS-CoV-2 specific antibodies and COVID-19 mortality. Results: Nonsurvivors (n = 955) induced higher levels of IgG responses against most of non-structural proteins than survivors (n = 79) on admission. In particular, the magnitude of IgG antibodies against 8 non-structural proteins (NSP1, NSP4, NSP7, NSP8, NSP9, NSP10, RdRp, and NSP14) and 2 accessory proteins (ORF3b and ORF9b) possessed significant predictive power for patient death, even after further adjustments for demographics, comorbidities, and common laboratory biomarkers for disease severity (all with p trend < 0.05). Additionally, IgG responses to all of these 10 non-structural/accessory proteins were also associated with the severity of disease, and differential kinetics and serum positive rate of these IgG responses were confirmed in COVID-19 patients of varying severities within 20 days after symptoms onset. The area under curves (AUCs) for these IgG responses, determined by computational cross-validations, were between 0.62 and 0.71. Conclusions: Our findings might have important implications for improving clinical management of COVID-19 patients.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunoglobulina G , SARS-CoV-2 , Índice de Gravidade de Doença
18.
Sci Total Environ ; 797: 149038, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34298367

RESUMO

Nitrogen (N) application and salinity are key factors influencing crop yield and net economic benefit in coastal saline-alkali soils. Integrated analysis and optimization of the benefits of wheat-corn cropping under different nitrogen applications in saline soils could provide lay the scientific basis for sustainable development of agriculture in coastal farmlands. A total of 571 pair-reviewed literature data on two-factor cross-over trials, involving soil salinity and nitrogen application, were integratively analyzed. Based on multi-objective optimization of crop yield, agronomic and net economic benefits, and soil nitrate residue in coastal saline-alkali soils, area-specific nitrogen application strategies were developed. The results showed that increasing the N application rate under 1.8-2.9‰ salinity can increase crop yield and economic benefits. The net economic benefit of crops was negative under 3.5‰ salinity. Above that threshold of 3.5‰, it is not suitable for planting food crops. Consequently, it is necessary to strengthen the management of saline-alkali soils. While the application rate of 2.78 × 108 kg N in winter wheat/summer corn cropping ensured environmental protection, farmers preferred 3.08 × 108 kg of nitrogen dose. These were respectively 40.4% and 33.9% lower than the traditional dose and with relatively higher benefits too.


Assuntos
Agricultura , Fertilizantes , China , Fazendas , Fertilização , Fertilizantes/análise , Nitrogênio/análise , Solo
19.
Artigo em Inglês | MEDLINE | ID: mdl-34201294

RESUMO

The intensive development of the Yellow River Delta has caused huge transportation of non-point pollutants into the Bohai Sea through source river estuaries and thus poses a considerable threat to eco-environmental security in the region. Long-term irrigation in the Yellow River basin, with occasional heavy rainfall and the related effects of ensuring hydrological processes and human activities in terms of nitrate N transport via surface water systems, is unclear. Using stable isotope (δ2H-H2O and δ18O-H2O, δ15N-NO3- and δ18O-NO3-) and auxiliary geographic data, the ISO source model was run to quantitatively analyze the supply relationship of river systems and the rapid change in the spatial pattern of nitrate N due to heavy rainfall in the estuarine delta. This analysis made clear the dominant contribution of agricultural activities and urbanization to NO3--N emission, on which basis refined management measures were proposed to deal with NO3- in surface water from the "source-process". The results of the study show that: (1) The relationship of surface water replenishment in the Yellow River Delta was affected not only by rainfall, irrigation, and other water conservancy measures but also the proportion of water from Yellow River flow declined from the source to estuary; (2) To a certain extent, rainfall diluted the concentration of nitrate N in the river and increased instantaneous flux of nitrate N into the sea, where nitrate N flux continuously increased from upstream to downstream; (3) The rapid deposition of nitrate in the estuary delta was driven by heavy rainfall and human activities such as excessive use of nitrogen fertilizers, rapid urbanization, and livestock waste discharge, and; (4) Scientific measures were needed to realize the interactive effect of the output of non-point source pollutants and the carrying and absorption capacity of coastal fragile ecosystems of the exogenous inputs.


Assuntos
Nitratos , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Atividades Humanas , Humanos , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
20.
Cell Death Dis ; 12(8): 746, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321465

RESUMO

MicroRNA (miR)-361-5p has been studied to suppress gliomas development. Based on that, an insight into the regulatory mechanism of miR-361-5p in gliomas was supplemented from ubiquitin protein ligase E3 component N-recognin 5 (UBR5)-mediated ubiquitination of ataxia-telangiectasia mutated interactor (ATMIN). miR-361-5p, ATMIN, and UBR5 levels were clinically analyzed in gliomas tissues, which were further validated in gliomas cell lines. Loss/gain-of-function method was applied to determine the roles of miR-361-5p and UBR5 in gliomas, as to cell viability, migration, invasion, colony formation ability, and apoptosis in vitro and tumorigenesis in vivo. The relationship between miR-361-5p and UBR5 was verified and the interaction between UBR5 and ATMIN was explored. It was detected that reduced miR-361-5p and ATMIN and enhanced UBR5 levels showed in gliomas. Elevating miR-361-5p was repressive in gliomas progression. UBR5 was directly targeted by miR-361-5p. UBR5 can ubiquitinate ATMIN. miR-361-5p suppressed gliomas by regulating UBR5-mediated ubiquitination of ATMIN. Downregulating UBR5 impeded gliomas tumor growth in vivo. Upregulating miR-361-5p targets UBR5 to promote ATMIN protein expression, thus to recline the malignant phenotype of gliomas cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Glioma/patologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa