Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Plant Physiol ; 301: 154303, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959754

RESUMO

Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (ß-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that ∼20 µg ß-carotene/g DW can reduced the PPD response of the cassava roots to a score of ∼1. Correlation analysis showed a significant correlation of ß-carotene content at harvest to PPD response (R2 -0.55). However, the decrease of ß-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from ß-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to ß-carotene or PPD. Observed data indicated an increase (∼2-fold) of alkanes in varieties with ß-carotene >10 µg/g DW and a decrease (∼60%) in varieties with less ß-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher ß-carotene content. In combination with correlation values to PPD (R2 ∼0.3; P-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.

2.
J Plant Physiol ; 251: 153206, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32512382

RESUMO

A broad diversity of phenotypes are available within the cassava germplasm collections. The phenotypes include improved nutritional, starch or culinary root quality as well as abiotic and biotic resistance properties. Some of these traits can be found naturally occurring in cassava landraces, whereas others are the result of targeted breeding efforts. For future breeding programmes it is important to know the underlying mechanisms of these desirable traits. Metabolomics can assist in the elucidation of these mechanisms by measuring the end products of the cellular processes conferring the traits of interest. The present study focused on the comparison of two or more variants of the same trait such as high and low culinary quality or resistance and susceptibility to thrips. Overall, eight different traits were assessed. Results showed that amino acids and umami compounds were associated with superior culinary attributes and the phenylpropanoid superpathway plays an important role in pest resistance. Furthermore, the data highlighted a low chemodiversity in African cassavas and that the source-sink relation was still active at the harvest stage.


Assuntos
Aminoácidos/análise , Manihot/química , Redes e Vias Metabólicas , Monossacarídeos/análise , Amido/análise , Qualidade dos Alimentos , Manihot/metabolismo , Fenótipo , Melhoramento Vegetal
3.
J Agric Food Chem ; 67(3): 986-993, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30557498

RESUMO

Cassava ( Manihot esculenta Crantz) is the predominant staple food in Sub-Saharan Africa (SSA) and an industrial crop in South East Asia. Despite focused breeding efforts for increased yield, resistance, and nutritional value, cassava breeding has not advanced at the same rapidity as other staple crops. In the present study, metabolomic techniques were implemented to characterize the chemotypes of selected cassava accessions and assess potential resources for the breeding program. The metabolite data analyzed was applied to describe the biochemical diversity available in the panel, identifying South American accessions as the most diverse. Genotypes with distinct phenotypic traits showed a representative metabolite profile and could be clearly identified, even if the phenotypic trait was a root characteristic, e.g., high amylose content.


Assuntos
Manihot/química , Manihot/metabolismo , Metaboloma , Amilose/análise , Genótipo , Manihot/classificação , Manihot/genética , Metabolômica , Valor Nutritivo , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa