Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 584(7822): 602-607, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641831

RESUMO

Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.


Assuntos
Ecótipo , Haplótipos , Helianthus/genética , Aclimatação/genética , Alelos , Flores/genética , Helianthus/anatomia & histologia , Helianthus/crescimento & desenvolvimento , Filogenia , Sementes/genética
2.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972449

RESUMO

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Assuntos
Helianthus , Helianthus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genótipo , Genômica
3.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648104

RESUMO

Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.


Assuntos
Helianthus , Helianthus/genética , Filogenia , Hibridização Genética , Haplótipos , Fluxo Gênico
4.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386181

RESUMO

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Melhoramento Vegetal , Necrose , Fenóis
5.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35535689

RESUMO

Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance, and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.


Assuntos
Inversão Cromossômica , Helianthus , Fluxo Gênico , Helianthus/genética , Heterozigoto , Mutação
6.
Mol Ecol ; 32(18): 5013-5027, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548650

RESUMO

Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.


Assuntos
Bass , Perciformes , Animais , Masculino , Perciformes/genética , Cromossomos Sexuais/genética , Cromossomo Y , Genômica/métodos , Bass/genética , Evolução Molecular
7.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
8.
Mol Ecol ; 31(3): 946-958, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34784095

RESUMO

Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studied Poecilia mexicana populations that have repeatedly adapted to extreme sulphidic (H2 S-containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium-wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.


Assuntos
Extremófilos , Sulfeto de Hidrogênio , Poecilia , Adaptação Fisiológica , Animais , Poecilia/genética , Seleção Genética
9.
Proc Natl Acad Sci U S A ; 116(42): 21302-21311, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570572

RESUMO

Mexico is recognized as the center of origin and domestication of maize. Introduction of modern maize varieties (MVs) into Mexico raised concerns regarding the possible effects of gene flow from MVs into maize landraces (LRs) and their wild relatives (WRs), teosintes. However, after more than 60 y from the release of the first MVs, the impact of the sympatry with LRs and their WRs has not been explored with genetic data. In this work, we assessed changes in the genomes of 7 maize LRs and 2 WR subspecies from collections spanning over 70 y. We compared the genotypes obtained by genotyping by sequencing (GBS) for LRs and WRs before and after the adoption of MVs, and observed introgression from sympatric MVs into LRs and into the WR Zea mays ssp. mexicana sampled after the year 2000. We also found a decrease in the paired divergence index (FST ) between MV-LR and MV-WR over the same time frame. Moreover, we determined that LR genetic diversity increased after 2000, probably as a result of gene flow from MVs introduced in the 1990s. Our findings allowed us to identify ongoing changes in the domesticated and wild maize genetic pools, and concur with previous works that have evaluated short-term gene flow from MVs into LRs in other crops. Our approach represents a useful tool for tracking evolutionary change in wild and domesticated genetic resources, as well as for developing strategies for their conservation.


Assuntos
Fluxo Gênico/genética , Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas/genética , Domesticação , Pool Gênico , Variação Genética/genética , Genótipo , México , Simpatria/genética
10.
Mol Ecol ; 30(23): 6229-6245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34080243

RESUMO

The origins of geographic races in wide-ranging species are poorly understood. In Texas, the texanus subspecies of Helianthus annuus has long been thought to have acquired its defining phenotypic traits via introgression from a local congener, H. debilis, but previous tests of this hypothesis were inconclusive. Here, we explore the origins of H. a. texanus using whole genome sequencing data from across the entire range of H. annuus and possible donor species, as well as phenotypic data from a common garden study. We found that although it is morphologically convergent with H. debilis, H. a. texanus has conflicting signals of introgression. Genome wide tests (Patterson's D and TreeMix) only found evidence of introgression from H. argophyllus (sister species to H. annuus and also sympatric), but not H. debilis, with the exception of one individual of 109 analysed. We further scanned the genome for localized signals of introgression using PCAdmix and found minimal but nonzero introgression from H. debilis and significant introgression from H. argophyllus in some populations. Given the paucity of introgression from H. debilis, we argue that the morphological convergence observed in Texas is probably from standing genetic variation. We also found that genomic differentiation in H. a. texanus is mostly driven by large segregating inversions, several of which have signatures of natural selection based on haplotype frequencies.


Assuntos
Helianthus , Genômica , Helianthus/genética , Hibridização Genética , Fenótipo , Seleção Genética
11.
Am Nat ; 195(2): 192-200, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017617

RESUMO

Closely related populations often display similar patterns of genomic differentiation, yet it remains an open question which ecological and evolutionary forces generate these patterns. The leading hypothesis is that this similarity in divergence is driven by parallel natural selection. However, several recent studies have suggested that these patterns may instead be a product of the depletion of genetic variation that occurs as result of background selection (i.e., linked negative selection). To date, there have been few direct tests of these competing hypotheses. To determine the relative contributions of background selection and parallel selection to patterns of repeated differentiation, we examined 24 independently derived populations of freshwater stickleback occupying a variety of niches and estimated genomic patterns of differentiation in each relative to their common marine ancestor. Patterns of genetic differentiation were strongly correlated across pairs of freshwater populations adapting to the same ecological niche, supporting a role for parallel natural selection. In contrast to other recent work, our study comparing populations adapting to the same niche produced no evidence signifying that similar patterns of genomic differentiation are generated by background selection. We also found that overall patterns of genetic differentiation were considerably more similar for populations found in closer geographic proximity. In fact, the effect of geography on the repeatability of differentiation was greater than that of parallel selection. Our results suggest that shared selective landscapes and ancestral variation are the key drivers of repeated patterns of differentiation in systems that have recently colonized novel environments.


Assuntos
Ecossistema , Seleção Genética , Smegmamorpha/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Água Doce , Variação Genética , Genética Populacional , Geografia , Polimorfismo de Nucleotídeo Único , Água do Mar
12.
Mol Ecol ; 29(14): 2535-2549, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246540

RESUMO

Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time-consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome-environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described "islands of differentiation," and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.


Assuntos
Adaptação Biológica/genética , Inversão Cromossômica/genética , Ecótipo , Genética Populacional , Helianthus , Fluxo Gênico , Interação Gene-Ambiente , Genoma de Planta , Helianthus/genética , Desequilíbrio de Ligação
13.
Mol Ecol ; 26(5): 1207-1210, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28271616

RESUMO

Linking molecular evolution to biological function is a long-standing challenge in evolutionary biology. Some of the best examples of this involve opsins, the genes that encode the molecular basis of light reception. In this issue of Molecular Ecology, three studies examine opsin gene sequence, expression and repertoire to determine how natural selection has shaped the visual system. First, Escobar-Camacho et al. () use opsin repertoire and expression in three Amazonian cichlid species to show that a shift in sensitivity towards longer wavelengths is coincident with the long-wavelength-dominated Amazon basin. Second, Stieb et al. () explore opsin sequence and expression in reef-dwelling damselfish and find that UV- and long-wavelength vision are both important, but likely for different ecological functions. Lastly, Suvorov et al. () study an expansive opsin repertoire in the insect order Odonata and find evidence that copy number expansion is consistent with the permanent heterozygote model of gene duplication. Together these studies emphasize the utility of opsin genes for studying both the local adaptation of sensory systems and, more generally, gene family evolution.


Assuntos
Ciclídeos , Opsinas/genética , Animais , Evolução Molecular , Filogenia , Opsinas de Bastonetes/genética
14.
Mol Ecol ; 26(17): 4378-4390, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667780

RESUMO

Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination.


Assuntos
Fluxo Gênico , Genética Populacional , Seleção Genética , Smegmamorpha/genética , Alelos , Animais , Recombinação Genética
15.
Ann Bot ; 120(1): 39-50, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459939

RESUMO

Background and Aims: The patterning of floral ultraviolet (UV) pigmentation varies both intra- and interspecifically in sunflowers and many other plant species, impacts pollinator attraction, and can be critical to reproductive success and crop yields. However, the genetic basis for variation in UV patterning is largely unknown. This study examines the genetic architecture for proportional and absolute size of the UV bullseye in Helianthus argophyllus , a close relative of the domesticated sunflower. Methods: A camera modified to capture UV light (320-380 nm) was used to phenotype floral UV patterning in an F 2 mapping population, then quantitative trait loci (QTL) were identified using genotyping-by-sequencing and linkage mapping. The ability of these QTL to predict the UV patterning of natural population individuals was also assessed. Key Results: Proportional UV pigmentation is additively controlled by six moderate effect QTL that are predictive of this phenotype in natural populations. In contrast, UV bullseye size is controlled by a single large effect QTL that also controls flowerhead size and co-localizes with a major flowering time QTL in Helianthus . Conclusions: The co-localization of the UV bullseye size QTL, flowerhead size QTL and a previously known flowering time QTL may indicate a single highly pleiotropic locus or several closely linked loci, which could inhibit UV bullseye size from responding to selection without change in correlated characters. The genetic architecture of proportional UV pigmentation is relatively simple and different from that of UV bullseye size, and so should be able to respond to natural or artificial selection independently.


Assuntos
Flores/anatomia & histologia , Helianthus/genética , Pigmentação/genética , Locos de Características Quantitativas , Raios Ultravioleta , Mapeamento Cromossômico , Flores/genética , Genótipo , Fenótipo
16.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147098

RESUMO

Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss.


Assuntos
Adaptação Fisiológica , Visão de Cores/fisiologia , Proteínas de Peixes/genética , Opsinas/genética , Smegmamorpha/fisiologia , Animais , Evolução Biológica , Colúmbia Britânica , Visão de Cores/genética , Feminino , Regulação da Expressão Gênica , Lagos , Luz , Smegmamorpha/genética
17.
Mol Ecol ; 25(11): 2630-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26840428

RESUMO

During invasion, colonizing species can hybridize with native species, potentially swamping out native genomes. However, theory predicts that introgression will often be biased into the invading species. Thus, empirical estimates of gene flow between native and invasive species are important to quantify the actual threat of hybridization with invasive species. One classic example of introgression occurs in California, where Helianthus bolanderi was thought to be a hybrid between the serpentine endemic Helianthus exilis and the congeneric invader Helianthus annuus. We used genotyping by sequencing to look for signals of introgression and population structure. We find that H. bolanderi and H. exilis form one genetic clade, with weak population structure that is associated with geographic location rather than soil composition and likely represent a single species, not two. Additionally, while our results confirmed early molecular analysis and failed to support the hybrid origin of H. bolanderi, we did find evidence for introgression mainly into the invader H. annuus, as predicted by theory.


Assuntos
Fluxo Gênico , Genética Populacional , Helianthus/genética , Hibridização Genética , Espécies Introduzidas , California , DNA de Plantas/genética , Técnicas de Genotipagem , Helianthus/classificação , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Mol Ecol ; 25(18): 4488-507, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27484941

RESUMO

Recent technological developments allow investigation of the repeatability of evolution at the genomic level. Such investigation is particularly powerful when applied to a ring species, in which spatial variation represents changes during the evolution of two species from one. We examined genomic variation among three subspecies of the greenish warbler ring species, using genotypes at 13 013 950 nucleotide sites along a new greenish warbler consensus genome assembly. Genomic regions of low within-group variation are remarkably consistent between the three populations. These regions show high relative differentiation but low absolute differentiation between populations. Comparisons with outgroup species show the locations of these peaks of relative differentiation are not well explained by phylogenetically conserved variation in recombination rates or selection. These patterns are consistent with a model in which selection in an ancestral form has reduced variation at some parts of the genome, and those same regions experience recurrent selection that subsequently reduces variation within each subspecies. The degree of heterogeneity in nucleotide diversity is greater than explained by models of background selection, but is consistent with selective sweeps. Given the evidence that greenish warblers have had both population differentiation for a long period of time and periods of gene flow between those populations, we propose that some genomic regions underwent selective sweeps over a broad geographic area followed by within-population selection-induced reductions in variation. An important implication of this 'sweep-before-differentiation' model is that genomic regions of high relative differentiation may have moved among populations more recently than other genomic regions.


Assuntos
Evolução Biológica , Passeriformes/genética , Seleção Genética , Animais , China , Fluxo Gênico , Genômica , Genótipo , Sibéria
19.
Am J Bot ; 103(12): 2170-2177, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27965242

RESUMO

PREMISE: Wild sunflowers harbor considerable genetic diversity and are a major resource for improvement of the cultivated sunflower, Helianthus annuus. The Helianthus genus is also well known for its propensity for gene flow between taxa. METHODS: We surveyed genomic diversity of 292 samples of wild Helianthus from 22 taxa that are cross-compatible with the cultivar using genotyping by sequencing. With these data, we derived a high-resolution phylogeny of the taxa, interrogated genome-wide levels of diversity, explored H. annuus population structure, and identified localized gene flow between H. annuus and its close relatives. KEY RESULTS: Our phylogenomic analyses confirmed a number of previously established interspecific relationships and indicated for the first time that a newly described annual sunflower, H. winteri, is nested within H. annuus. Principal component analyses showed that H. annuus has geographic population structure with most notable subpopulations occurring in California and Texas. While gene flow was identified between H. annuus and H. bolanderi in California and between H. annuus and H. argophyllus in Texas, this genetic exchange does not appear to drive observed patterns of H. annuus population structure. CONCLUSIONS: Wild H. annuus remains an excellent resource for cultivated sunflower breeding effort because of its diversity and the ease with which it can be crossed with cultivated H. annuus. Cases of interspecific gene flow such as those documented here also indicate wild H. annuus can act as a bridge to capture alleles from other wild taxa; continued breeding efforts with it may therefore reap the largest rewards.


Assuntos
Fluxo Gênico , Variação Genética , Genoma de Planta/genética , Genômica , Helianthus/genética , Alelos , Cruzamento , Demografia , Estruturas Genéticas , Genótipo , Filogenia
20.
Mol Ecol ; 23(2): 311-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26010734

RESUMO

The repeated evolution of traits in organisms facing similar environmental conditions is considered to be fundamental evidence for the role of natural selection in moulding phenotypes. Yet, aside from case studies of parallel evolution and its genetic basis, the repeatability of evolution at the level of the whole genome remains poorly characterized. Here, through the use of transcriptome sequencing, we examined genomic divergence for three pairs of sister species of sunflowers. Two of the pairs (Helianthus petiolaris - H. debilis and H. annuus - H. argophyllus) have diverged along a similar latitudinal gradient and presumably experienced similar selective pressure. In contrast, a third species pair (H. exilis - H. bolanderi) diverged along a longitudinal gradient. Analyses of divergence, as measured in terms of FST, indicated little repeatability across the three pairs of species for individual genetic markers (SNPs), modest repeatability at the level of individual genes and the highest repeatability when large regions of the genome were compared. As expected, higher repeatability was observed for the two species pairs that have diverged along a similar latitudinal gradient, with genes involved in flowering time among the most divergent genes. Genes showing extreme low or high differentiation were more similar than genes showing medium levels of divergence, implying that both purifying and divergent selection contributed to repeatable patterns of divergence. The location of a gene along the chromosome also predicted divergence levels, presumably because of shared heterogeneity in both recombination and mutation rates. In conclusion, repeated genome evolution appeared to result from both similar selective pressures and shared local genomic landscapes.


Assuntos
Variação Genética , Genoma de Planta , Helianthus/genética , Seleção Genética , DNA de Plantas/genética , Especiação Genética , Helianthus/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa