Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63778, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829177

RESUMO

TANGO2 deficiency disorder (TDD) is a rare, autosomal recessive condition caused by pathogenic variants in TANGO2, a gene residing within the region commonly deleted in 22q11.2 deletion syndrome (22q11.2DS). Although patients with 22q11.2DS are at substantially higher risk for comorbid TDD, it remains underdiagnosed within 22q11.2DS, likely due to overlapping symptomatology and a lack of knowledge about TDD. Initiation of B-vitamin supplementation may provide therapeutic benefit in TDD, highlighting the need for effective screening methods to improve diagnosis rates in this at-risk group. In this retrospective, multicenter study, we evaluated two cohorts of patients with 22q11.2DS (total N = 435) for possible comorbid TDD using two different symptom-based screening methods (free text-mining and manual chart review versus manual chart review alone). The methodology of the cohort 1 screening method successfully identified a known 22q11.2DS patient with TDD. Combined, these two cohorts identified 21 living patients meeting the consensus recommendation for TANGO2 testing for suspected comorbid TDD. Of the nine patients undergoing TANGO2 sequencing with del/dup analysis, none were ultimately diagnosed with TDD. Of the 12 deaths in the suspected comorbid TDD cohort, some of these patients exhibited symptoms (rhabdomyolysis, cardiac arrhythmia, or metabolic crisis) suspicious of comorbid TDD contributing to their death. Collectively, these findings highlight the need for robust prospective screening tools for diagnosing comorbid TDD in patients with 22q11.2DS.

2.
J Neuroinflammation ; 19(1): 38, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130912

RESUMO

BACKGROUND: Alzheimer's disease is the leading cause of dementia worldwide. TAM receptor tyrosine kinases (Tyro3, Axl, MerTK) are known for their role in engagement of phagocytosis and modulation of inflammation, and recent evidence suggests a complex relationship between Axl, Mer, and microglial phagocytosis of amyloid plaques in AD. Gas6, the primary CNS TAM ligand, reduces neuroinflammation and improves outcomes in murine models of CNS disease. Therefore, we hypothesized that AAV-mediated overexpression of Gas6 would alleviate plaque pathology, reduce neuroinflammation, and improve behavior in the APP/PS1 model of Alzheimer's disease. METHODS: Adeno-associated viral vectors were used to overexpress Gas6 in the APP/PS1 model of Alzheimer's disease. Nine-month-old male and female APP/PS1 and nontransgenic littermates received bilateral stereotactic hippocampal injections of AAV-Gas6 or AAV-control, which expresses a non-functional Gas6 protein. One month after injections, mice underwent a battery of behavioral tasks to assess cognitive function and brains were processed for immunohistochemical and transcriptional analyses. RESULTS: Gas6 overexpression reduced plaque burden in male APP/PS1 mice. However, contrary to our hypothesis, Gas6 increased pro-inflammatory microglial gene expression and worsened contextual fear conditioning compared to control-treated mice. Gas6 overexpression appeared to have no effect on phagocytic mechanisms in vitro or in vivo as measured by CD68 immunohistochemistry, microglial methoxy-04 uptake, and primary microglial uptake of fluorescent fibrillar amyloid beta. CONCLUSION: Our data describes a triad of worsened behavior, reduced plaque number, and an increase in proinflammatory signaling in a sex-specific manner. While Gas6 has historically induced anti-inflammatory signatures in the peripheral nervous system, our data suggest an alternative, proinflammatory role in the context of Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Peptídeos e Proteínas de Sinalização Intercelular , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia , Presenilina-1/genética
3.
J Neuroinflammation ; 16(1): 261, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822279

RESUMO

BACKGROUND: Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer's disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1ß in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2+ myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1ß-induced plaque clearance. To date, however, the mechanisms of IL-1ß-induced plaque clearance remain poorly understood. METHODS: To determine whether microglia are involved in IL-1ß-induced plaque clearance, APP/PS1 mice induced to express mature human IL-1ß in the hippocampus via adenoviral transduction were treated with the Aß fluorescent probe methoxy-X04 (MX04) and microglial internalization of fibrillar Aß (fAß) was analyzed by flow cytometry and immunohistochemistry. To assess microglial proliferation, APP/PS1 mice transduced with IL-1ß or control were injected intraperitoneally with BrdU and hippocampal tissue was analyzed by flow cytometry. RNAseq analysis was conducted on microglia FACS sorted from the hippocampus of control or IL-1ß-treated APP/PS1 mice. These microglia were also sorted based on MX04 labeling (MX04+ and MX04- microglia). RESULTS: Resident microglia (CD45loCD11b+) constituted > 70% of the MX04+ cells in both Phe- and IL-1ß-treated conditions, and < 15% of MX04+ cells were recruited myeloid cells (CD45hiCD11b+). However, IL-1ß treatment did not augment the percentage of MX04+ microglia nor the quantity of fAß internalized by individual microglia. Instead, IL-1ß increased the total number of MX04+ microglia in the hippocampus due to IL-1ß-induced proliferation. In addition, transcriptomic analyses revealed that IL-1ß treatment was associated with large-scale changes in the expression of genes related to immune responses, proliferation, and cytokine signaling. CONCLUSIONS: These studies show that IL-1ß overexpression early in amyloid pathogenesis induces a change in the microglial gene expression profile and an expansion of microglial cells that facilitates Aß plaque clearance.


Assuntos
Reprogramação Celular/fisiologia , Interleucina-1beta/biossíntese , Microglia/metabolismo , Placa Amiloide/metabolismo , Transcrição Gênica/fisiologia , Transcriptoma/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/genética
5.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106020

RESUMO

Mutations in the TANGO2 gene cause severe illness in humans, including life-threatening metabolic crises; however, the function of TANGO2 protein remains unknown. In a recent publication in Nature, Sun et al. proposed that TANGO2 helps transport haem within and between cells, from areas with high haem concentrations to those with lower concentrations. Caenorhabditis elegans has two versions of TANGO2 that Sun et al. called HRG-9 and HRG-10. They demonstrated that worms deficient in these proteins show increased survival upon exposure to a toxic haem analog, which Sun et al. interpreted as evidence of decreased haem uptake from intestinal cells into the rest of the organism. We repeated several experiments using the same C. elegans strain as Sun et al. and believe that their findings are better explained by reduced feeding behavior in these worms. We demonstrate that hrg-9 in particular is highly responsive to oxidative stress, independent of haem status. Our group also performed several experiments in yeast and zebrafish models of TANGO2 deficiency and was unable to replicate key findings from these models reported in Sun et al.'s original study. Overall, we believe there is insufficient evidence to support haem transport as the primary function for TANGO2.

6.
Front Neurosci ; 15: 758677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744620

RESUMO

Neuroinflammation driven by the accumulation of amyloid ß (Aß) can lead to neurofibrillary tangle formation in Alzheimer's Disease (AD). To test the hypothesis that an anti-inflammatory immunomodulatory agent might have beneficial effects on amyloid and tau pathology, as well as microglial phenotype, we evaluated glatiramer acetate (GA), a multiple sclerosis drug thought to bias type 2 helper T (Th2) cell responses and alternatively activate myeloid cells. We administered weekly subcutaneous injections of GA or PBS to 15-month-old 3xTg AD mice, which develop both amyloid and tau pathology, for a period of 8 weeks. We found that subcutaneous administration of GA improved behavioral performance in novel object recognition and decreased Aß plaque in the 3xTg AD mice. Changes in tau phosphorylation were mixed with specific changes in phosphoepitopes seen in immunohistochemistry but not observed in western blot. In addition, we found that there was a trend toward increased microglia complexity in 3xTg mice treated with GA, suggesting a shift toward homeostasis. These findings correlated with subtle changes in the microglial transcriptome, in which the most striking difference was the upregulation of Dcstamp. Lastly, we found no evidence of changes in proportions of major helper T cell (Th) subtypes in the periphery. Overall, our study provides further evidence for the benefits of immunomodulatory therapies that alter the adaptive immune system with the goal of modifying microglia responses for the treatment of Alzheimer's Disease.

7.
Life Sci Space Res (Amst) ; 27: 89-98, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34756235

RESUMO

Space radiation is comprised of highly charged ions (HZE particles) and protons that are able to pass through matter and cause radiation-induced injury, including neuronal damage and degeneration, glial activation, and oxidative stress. Previous work demonstrated a worsening of Alzheimer's disease pathology in the APP/PS1 transgenic mouse model, however effects of space radiation on tau pathology have not been studied. To determine whether tau pathology is altered by HZE particle or proton irradiation, we exposed 3xTg mice, which acquire both amyloid plaque and tau pathology with age, to iron, silicon, or solar particle event (SPE) irradiation at 9 months of age and evaluated behavior and brain pathology at 16 months of age. We found no differences in performance in fear conditioning and novel object recognition tasks between groups of mice exposed to sham, iron (10 and 100 cGy), silicon (10 and 100 cGy), or solar particle event radiation (200 cGy), though female mice had higher freezing responses than males. 200 cGy SPE irradiated female mice had fewer plaques than sham-irradiated females but had no differences in tau pathology. Overall, females had worse amyloid and tau pathology at 16 months of age and demonstrated a reduced neuroinflammatory gene expression response to radiation. These findings uncover differences between mouse models following radiation injury and corroborate prior reports of sex differences within the 3xTg mouse model.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1 , Proteínas tau
8.
Brain Behav Immun Health ; 4: 100057, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34589843

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 â€‹Gy dose. Similarly, in a metastatic tumor model, prior CI (20 â€‹Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 â€‹Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain's normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa