Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hematol ; 95(8): 883-891, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32282969

RESUMO

Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub-Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state-of-the-art deep-learning object detectors requires the human-expert labor-intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical-microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/µL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.


Assuntos
Malária Falciparum/sangue , Malária/diagnóstico , Redes Neurais de Computação , Humanos , Malária/sangue
2.
Sci Rep ; 10(1): 15918, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985514

RESUMO

Over 200 million malaria cases globally lead to half-million deaths annually. The development of malaria prevalence prediction systems to support malaria care pathways has been hindered by lack of data, a tendency towards universal "monolithic" models (one-size-fits-all-regions) and a focus on long lead time predictions. Current systems do not provide short-term local predictions at an accuracy suitable for deployment in clinical practice. Here we show a data-driven approach that reliably produces one-month-ahead prevalence prediction within a densely populated all-year-round malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest global burdens of P. falciparum malaria. We estimate one-month-ahead prevalence in a unique 22-years prospective regional dataset of > 9 × 104 participants attending our healthcare services. Our system agrees with both magnitude and direction of the prediction on validation data achieving MAE ≤ 6 × 10-2, MSE ≤ 7 × 10-3, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates within a (+ 0.1 to - 0.05) error-tolerance range which is clinically relevant for decision-support in our holoendemic setting. Our data-driven approach could facilitate healthcare systems to harness their own data to support local malaria care pathways.


Assuntos
Malária/epidemiologia , População Urbana , África Subsaariana/epidemiologia , África Ocidental/epidemiologia , Humanos , Modelos Teóricos , Prevalência , Estudos Prospectivos
3.
Sci Rep ; 8(1): 17527, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510258

RESUMO

Severe Malarial Anemia (SMA), a life-threatening childhood Plasmodium falciparum malaria syndrome requiring urgent blood transfusion, exhibits inflammatory and hemolytic pathology. Differentiating between hypo-haptoglobinemia due to hemolysis or that of genetic origin is key to understand SMA pathogenesis. We hypothesized that while malaria-induced hypo-haptoglobinemia should reverse at recovery, that of genetic etiology should not. We carried-out a case-control study of children living under hyper-endemic holoendemic malaria burden in the sub-Saharan metropolis of Ibadan, Nigeria. We show that hypo-haptoglobinemia is a risk factor for childhood SMA and not solely due to intravascular hemolysis from underlying schizogony. In children presenting with SMA, hypo-haptoglobinemia remains through convalescence to recovery suggesting a genetic cause. We identified a haptoglobin gene variant, rs12162087 (g.-1203G > A, frequency = 0.67), to be associated with plasma haptoglobin levels (p = 8.5 × 10-6). The Homo-Var:(AA) is associated with high plasma haptoglobin while the reference Homo-Ref:(GG) is associated with hypo-haptoglobinemia (p = 2.3 × 10-6). The variant is associated with SMA, with the most support for a risk effect for Homo-Ref genotype. Our insights on regulatory haptoglobin genotypes and hypo-haptoglobinemia suggest that haptoglobin screening could be part of risk-assessment algorithms to prevent rapid disease progression towards SMA in regions with no-access to urgent blood transfusion where SMA accounts for high childhood mortality rates.


Assuntos
Anemia , Haptoglobinas , Hemólise/genética , Malária Falciparum , Polimorfismo de Nucleotídeo Único , Anemia/sangue , Anemia/genética , Anemia/parasitologia , Criança , Pré-Escolar , Feminino , Haptoglobinas/genética , Haptoglobinas/metabolismo , Humanos , Malária Falciparum/sangue , Malária Falciparum/genética , Masculino , Plasmodium falciparum , Fatores de Risco , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa