Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Pathog ; 17(1): e1009216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481911

RESUMO

Intracellular pathogens have evolved to utilize normal cellular processes to complete their replicative cycles. Pathogens that interface with proliferative cell signaling pathways risk infections that can lead to cancers, but the factors that influence malignant outcomes are incompletely understood. Human papillomaviruses (HPVs) predominantly cause benign hyperplasia in stratifying epithelial tissues. However, a subset of carcinogenic or "high-risk" HPV (hr-HPV) genotypes are etiologically linked to nearly 5% of all human cancers. Progression of hr-HPV-induced lesions to malignancies is characterized by increased expression of the E6 and E7 oncogenes and the oncogenic functions of these viral proteins have been widely studied. Yet, the mechanisms that regulate hr-HPV oncogene transcription and suppress their expression in benign lesions remain poorly understood. Here, we demonstrate that EGFR/MEK/ERK signaling, influenced by epithelial contact inhibition and tissue differentiation cues, regulates hr-HPV oncogene expression. Using monolayer cells, epithelial organotypic tissue models, and neoplastic tissue biopsy materials, we show that cell-extrinsic activation of ERK overrides cellular control to promote HPV oncogene expression and the neoplastic phenotype. Our data suggest that HPVs are adapted to use the EGFR/MEK/ERK signaling pathway to regulate their productive replicative cycles. Mechanistic studies show that EGFR/MEK/ERK signaling influences AP-1 transcription factor activity and AP-1 factor knockdown reduces oncogene transcription. Furthermore, pharmacological inhibitors of EGFR, MEK, and ERK signaling quash HPV oncogene expression and the neoplastic phenotype, revealing a potential clinical strategy to suppress uncontrolled cell proliferation, reduce oncogene expression and treat HPV neoplasia.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/virologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Terapia de Alvo Molecular , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia
2.
Antimicrob Agents Chemother ; 66(1): e0151321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723633

RESUMO

Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.


Assuntos
Infecções por Papillomavirus , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Papillomaviridae , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Protaminas/farmacologia , Internalização do Vírus
3.
J Gen Virol ; 96(8): 2232-2241, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26289843

RESUMO

Oncogenic human papillomaviruses (HPVs) attach predominantly to extracellular matrix (ECM) components during infection of cultured keratinocytes and in the rodent vaginal challenge model in vivo. However, the mechanism of virion transfer from the ECM to receptors that mediate entry into host cells has not been determined. In this work we strove to assess the role of heparan sulfate (HS) chains in HPV16 binding to the ECM and determine how HPV16 release from the ECM is regulated. We also assessed the extent to which capsids released from the ECM are infectious. We show that a large fraction of HPV16 particles binds to the ECM via HS chains, and that syndecan-1 (snd-1) molecules present in the ECM are involved in virus binding. Inhibiting the normal processing of snd-1 and HS molecules via matrix metalloproteinases and heparanase dramatically reduces virus release from the ECM, cellular uptake and infection. Conversely, exogenous heparinase activates each of these processes. We confirm that HPV16 released from the ECM is infectious in keratinocytes. Use of a specific inhibitor shows furin is not involved in HPV16 release from ECM attachment factors and corroborates other studies showing only the intracellular activity of furin is responsible for modulating HPV infectivity. These data suggest that our recently proposed model, describing the action of HS proteoglycan processing enzymes in releasing HPV16 from the cell surface in complex with the attachment factor snd-1, is also relevant to the release of HPV16 particles from the ECM to promote efficient infection of keratinocytes.


Assuntos
Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo , Papillomavirus Humano 16/fisiologia , Queratinócitos/metabolismo , Infecções por Papillomavirus/metabolismo , Sindecana-1/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/virologia , Feminino , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Receptores Virais/genética , Receptores Virais/metabolismo , Sindecana-1/genética , Ligação Viral
4.
Traffic ; 13(3): 455-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22151726

RESUMO

The human papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection, but the molecular mechanisms underlying its mode of action remain obscure. Using a proteomic approach, we have identified the adaptor protein, sorting nexin 17 (SNX17) as a strong interacting partner of HPV L2. This interaction occurs through a highly conserved SNX17 consensus binding motif, which is present in the majority of HPV L2 proteins analysed. Using mutants of L2 defective for SNX17 interaction, or siRNA ablation of SNX17 expression, we demonstrate that the interaction between L2 and SNX17 is essential for viral infection. Furthermore, loss of the L2-SNX17 interaction results in enhanced turnover of the L2 protein and decreased stability of the viral capsids, and concomitantly, there is a dramatic decrease in the efficiency with which viral genomes transit to the nucleus. Indeed, using a range of endosomal and lysosomal markers, we show that capsids defective in their capacity to bind SNX17 transit much more rapidly to the lysosomal compartment. These results demonstrate that the L2-SNX17 interaction is essential for viral infection and facilitates the escape of the L2-DNA complex from the late endosomal/lysosomal compartments.


Assuntos
Proteínas do Capsídeo/metabolismo , Endossomos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae , Nexinas de Classificação/metabolismo , Infecções por Vírus de DNA/patologia , Células HEK293 , Humanos , Fatores de Tempo
5.
Carcinogenesis ; 35(10): 2373-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064354

RESUMO

High-risk human papillomavirus (HR-HPV) infections are necessary but insufficient agents of cervical and other epithelial cancers. Epidemiological studies support a causal, but ill-defined, relationship between tobacco smoking and cervical malignancies. In this study, we used mainstream tobacco smoke condensate (MSTS-C) treatments of cervical cell lines that maintain either episomal or integrated HPV16 or HPV31 genomes to model tobacco smoke exposure to the cervical epithelium of the smoker. MSTS-C exposure caused a dose-dependent increase in viral genome replication and correspondingly higher early gene transcription in cells with episomal HPV genomes. However, MSTS-C exposure in cells with integrated HR-HPV genomes had no effect on genome copy number or early gene transcription. In cells with episomal HPV genomes, the MSTS-C-induced increases in E6 oncogene transcription led to decreased p53 protein levels and activity. As expected from loss of p53 activity in tobacco-exposed cells, DNA strand breaks were significantly higher but apoptosis was minimal compared with cells containing integrated viral genomes. Furthermore, DNA mutation frequencies were higher in surviving cells with HPV episomes. These findings provide increased understanding of tobacco smoke exposure risk in HPV infection and indicate tobacco smoking acts more directly to alter HR-HPV oncogene expression in cells that maintain episomal viral genomes. This suggests a more prominent role for tobacco smoke in earlier stages of HPV-related cancer progression.


Assuntos
Colo do Útero/efeitos dos fármacos , Colo do Útero/virologia , Papillomavirus Humano 16/genética , Taxa de Mutação , Proteínas E7 de Papillomavirus/genética , Fumar/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Colo do Útero/patologia , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/patogenicidade , Humanos , Proteínas Oncogênicas Virais/genética , Plasmídeos , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/induzido quimicamente , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Replicação Viral/efeitos dos fármacos
6.
J Virol ; 87(13): 7502-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637395

RESUMO

Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca(2+)-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.


Assuntos
Anexina A2/metabolismo , Papillomavirus Humano 16/fisiologia , Queratinócitos/virologia , Proteínas S100/metabolismo , Internalização do Vírus , Fracionamento Celular , Ativação Enzimática/fisiologia , Receptores ErbB/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Papillomavirus Humano 16/ultraestrutura , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Microscopia Eletrônica de Transmissão , Fosforilação , Plasmídeos/genética , Transporte Proteico , RNA Interferente Pequeno/genética , Quinases da Família src/metabolismo
7.
J Virol ; 87(5): 2508-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255786

RESUMO

The mammalian target of rapamycin (mTOR) downstream of phosphatidylinositol 3-kinase (PI3K) in the growth factor receptor (GFR) pathway is a crucial metabolic sensor that integrates growth factor signals in cells. We recently showed that human papillomavirus (HPV) type 16 exposure activates signaling from GFRs in human keratinocytes. Thus, we predicted that the virus would induce the PI3K/mTOR pathway upon interaction with host cells. We detected activation of Akt and mTOR several minutes following exposure of human keratinocytes to HPV type 16 (HPV16) pseudovirions. Activated mTOR induced phosphorylation of the mTOR complex 1 substrates 4E-BP1 and S6K, which led to induction of the functional protein translational machinery. Blockade of epidermal GFR (EGFR) signaling revealed that each of these events is at least partially dependent upon EGFR activation. Importantly, activation of PI3K/Akt/mTOR signaling inhibited autophagy in the early stages of virus-host cell interaction. Biochemical and genetic approaches revealed critical roles for mTOR activation and autophagy suppression in HPV16 early infection events. In summary, the HPV-host cell interaction stimulates the PI3K/Akt/mTOR pathway and inhibits autophagy, and in combination these events benefit virus infection.


Assuntos
Autofagia , Papillomavirus Humano 16/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Internalização do Vírus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem Celular , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Células HEK293 , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , PTEN Fosfo-Hidrolase/metabolismo , Infecções por Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
8.
PLoS Pathog ; 8(2): e1002519, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346752

RESUMO

A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Papillomavirus Humano 16/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infecções por Papillomavirus/virologia , Vírion/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Receptores ErbB/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/patogenicidade , Humanos , Queratinócitos/virologia , Modelos Biológicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores Virais/metabolismo , Transdução de Sinais , Sindecana-1/metabolismo , Vírion/patogenicidade , Internalização do Vírus
9.
J Virol ; 86(8): 4169-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345461

RESUMO

Cell invasion by human papillomavirus type 16 (HPV16) is a complex process relying on multiple host cell factors. Here we describe an investigation into the role of cellular protein disulfide isomerases (PDIs) by studying the effects of the commonly used PDI inhibitor bacitracin on HPV16 infection. Bacitracin caused an unusual time-dependent opposing effect on viral infection. Enhanced cellular binding and entry were observed at early times of infection, while inhibition was observed at later times postentry. Bacitracin was rapidly taken up by host cells and colocalized with HPV16 at late times of infection. Bacitracin had no deleterious effect on HPV16 entry, capsid disassembly, exposure of L1/L2 epitopes, or lysosomal trafficking but caused a stark inhibition of L2/viral DNA (vDNA) endosomal penetration and accumulation at nuclear PML bodies. γ-Secretase has recently been implicated in the endosomal penetration of L2/vDNA, but bacitracin had no effect on γ-secretase activity, indicating that blockage of this step occurs through a γ-secretase-independent mechanism. Transient treatment with the reductant ß-mercaptoethanol (ß-ME) was able to partially rescue the virus from bacitracin, suggesting the involvement of a cellular reductase activity in HPV16 infection. Small interfering RNA (siRNA) knockdown of cellular PDI and the related PDI family members ERp57 and ERp72 reveals a potential role for PDI and ERp72 in HPV infection.


Assuntos
Antivirais/farmacologia , Bacitracina/farmacologia , Endossomos/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Antivirais/metabolismo , Bacitracina/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Linhagem Celular , Nucléolo Celular/metabolismo , Endocitose , Endossomos/virologia , Epitopos/imunologia , Genoma Viral , Papillomavirus Humano 16/imunologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/genética , Substâncias Redutoras/farmacologia , Internalização do Vírus/efeitos dos fármacos
10.
Antiviral Res ; 216: 105667, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429527

RESUMO

Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.


Assuntos
Neoplasias , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Animais , Camundongos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Papillomavirus Humano , Carcinogênese , Quinases de Proteína Quinase Ativadas por Mitógeno , Papillomaviridae/genética , Proteínas Oncogênicas Virais/metabolismo
11.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993217

RESUMO

Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement: Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.

12.
Curr Opin Virol ; 50: 76-86, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416595

RESUMO

Human papillomaviruses (HPVs) infect and replicate in differentiating mucosal and cutaneous epithelium. Most HPV infections are asymptomatic or cause transient benign neoplasia. However, persistent infections by oncogenic HPV types can progress to cancer. During infectious entry into host keratinocytes, HPV particles interact with many host proteins, beginning with major capsid protein L1 binding to cellular heparan sulfate and a series of enzymatic capsid modifications that promote infectious cellular entry. After utilizing the endosomal pathway to uncoat the viral genome (vDNA), the minor capsid protein L2/vDNA complex is retrograde trafficked to the Golgi, and thereafter, to the nucleus where viral transcription initiates. Post-Golgi trafficking is dependent on mitosis, with L2-dependent tethering of vDNA to mitotic chromosomes before accumulation at nuclear substructures in G1. This review summarizes the current knowledge of the HPV entry pathway, the role of cellular proteins in this process, and notes many gaps in our understanding.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Proteínas do Capsídeo , Humanos , Papillomaviridae , Internalização do Vírus
13.
EBioMedicine ; 63: 103165, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33422988

RESUMO

BACKGROUND: Recent publications from a single research group have suggested that aldehyde-based high-level disinfectants (HLDs), such as ortho-phthalaldehyde (OPA), are not effective at inactivating HPVs and that therefore, patients may be at risk of HPV infection from medical devices. These results could have significant public health consequences and therefore necessitated evaluation of their reproducibility and clinical relevance. METHODS: We developed methods and used standardised controls to: (1) quantify the infectious levels of clinically-sourced HPVs from patient lesions and compare them to laboratory-derived HPVs, (2) evaluate experimental factors that should be controlled to ensure consistent and reproducible infectivity measurements of different HPV genotypes, and (3) determine the efficacy of select HLDs. FINDINGS: A novel focus forming unit (FFU) infectivity assay demonstrated that exfoliates from patient anogenital lesions and respiratory papillomas yielded infectious HPV burdens up to 2.7 × 103 FFU; therefore, using 2.2 × 102 to 1.0 × 104 FFU of laboratory-derived HPVs in disinfection assays provides a relevant range for clinical exposures. RNase and neutralising antibody sensitivities were used to ensure valid infectivity measures of tissue-derived and recombinant HPV preparations. HPV infectivity was demonstrated over a dynamic range of 4-5 log10; and disinfection with OPA and hypochlorite was achieved over 3 to >4 log10 with multiple genotypes of tissue-derived and recombinant HPV isolates. INTERPRETATION: This work, along with a companion publication from an independent lab in this issue, address a major public health question by showing that HPVs are susceptible to HLDs. FUNDING: Advanced Sterilization Products; US NIH (R01CA207368, U19AI084081, P30CA118100).


Assuntos
Alphapapillomavirus/efeitos dos fármacos , Alphapapillomavirus/fisiologia , Desinfetantes/farmacologia , Infecções por Papillomavirus/virologia , Carga Viral , Alphapapillomavirus/classificação , Alphapapillomavirus/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Células Cultivadas , Desinfecção/métodos , Feminino , Genoma Viral , Genótipo , Humanos , Masculino , Testes de Neutralização
14.
J Virol ; 82(19): 9505-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667513

RESUMO

High-risk human papillomaviruses (HPVs) are small nonenveloped DNA viruses with a strict tropism for squamous epithelium. The viruses are causative agents of cervical cancer and some head and neck cancers, but their differentiation-dependent life cycles have made them difficult to study in simple cell culture. Thus, many aspects of early HPV infection remain mysterious. We recently showed the high-risk HPV type 31 (HPV31) enters its natural host cell type via caveola-dependent endocytosis, a distinct mechanism from that of the closely related HPV16 (Smith et al., J. Virol. 81:9922-9931, 2007). Here, we determined the downstream trafficking events after caveolar entry of HPV31 into human keratinocytes. After initial plasma membrane binding, HPV31 associates with caveolin-1 and transiently localizes to the caveosome before trafficking to the early endosome and proceeding through the endosomal pathway. Caveosome-to-endosome transport was found to be Rab5 GTPase dependent. Although HPV31 capsids were observed in the lysosome, Rab7 GTPase was dispensable for HPV31 infection, suggesting that viral genomes escape from the endosomal pathway prior to Rab7-mediated capsid transport. Consistent with this, the acidic pH encountered by HPV31 within the early endosomal pathway induces a conformational change in the capsid resulting in increased DNase susceptibility of the viral genome, which likely aids in uncoating and/or endosomal escape. The entry and trafficking route of HPV31 into human keratinocytes represents a unique viral pathway by which the virions use caveolar entry to eventually access a low-pH site that appears to facilitate endosomal escape of genomes.


Assuntos
Caveolina 1/metabolismo , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Genoma , Genoma Viral , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Conformação Molecular , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
Papillomavirus Res ; 7: 188-192, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981651

RESUMO

Human papillomaviruses (HPVs), like all PVs, predominantly cause benign tumors, or warts, in stratifying squamous epithelial tissues. Virions are released from apical surfaces of the skin and mucosa and, to initiate a new infection, must utilize a break in the epithelial barrier to access mitotically active basal epithelial cells. Laboratory models currently used to study the HPV infectious process reveal that heparan sulfate proteoglycans and cellular enzymes are utilized to prime virions and activate cell signaling to coordinate virus association with a receptor complex for uptake into keratinocytes. Conventional cell-based infection systems lack many aspects relevant to determining the role of epithelial wounding in HPV infections. Nevertheless, many cellular factors involved in virion interaction with cells have been shown to actively coordinate their activities in the dynamic state of an epithelial wound. In this review, I summarize the current knowledge regarding how HPVs interact with extracellular components to prime virus particles for eventual disassembly and effectuate association with the viral receptor complex. Additionally, I propose a model to account for how epithelial injury and the wound response may actively participate in successful HPV infection of basal epithelial cells.


Assuntos
Células Epiteliais/virologia , Matriz Extracelular/metabolismo , Interações Hospedeiro-Patógeno , Papillomaviridae/crescimento & desenvolvimento , Infecções por Papillomavirus/fisiopatologia , Transdução de Sinais , Internalização do Vírus , Humanos
16.
Front Cell Dev Biol ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475144

RESUMO

Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.

17.
Oncogene ; 38(48): 7329-7341, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417185

RESUMO

Radiation therapy (RT) is a cornerstone of treatment in the management of head and neck squamous cell carcinomas (HNSCC), yet treatment failure and disease recurrence are common. The p38/MK2 pathway is activated in response to cellular stressors, including radiation, and promotes tumor inflammation in a variety of cancers. We investigated MK2 pathway activation in HNSCC and the interaction of MK2 and RT in vitro and in vivo. We used a combination of an oropharyngeal SCC tissue microarray, HNSCC cell lines, and patient-derived xenograft (PDX) tumor models to study the effect of RT on MK2 pathway activation and to determine how inhibition of MK2 by pharmacologic (PF-3644022) and genetic (siRNA) methods impacts tumor growth. We show that high phosphorylated MK2 (p-MK2) levels are associated with worsened disease-specific survival in p16-negative HNSCC patients. RT increased p-MK2 in both p16-positive, HPV-positive and p16-negative, HPV-negative HNSCC cell lines. Pharmacologic inhibition or gene silencing of MK2 in vitro abrogated RT-induced increases in p-MK2; inflammatory cytokine expression and expression of the downstream MK2 target, heat shock protein 27 (HSP27); and markers of epithelial-to-mesenchymal transition. Mouse PDX models treated with a combination of RT and MK2 inhibitor experienced decreased tumor growth and increased survival. Our results suggest that MK2 is a potential prognostic biomarker for head and neck cancer and that MK2 pathway activation can mediate radiation resistance in HNSCC.


Assuntos
Citocinas/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Infecções por Papillomavirus/complicações , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Radioterapia/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/virologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Nus , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Microbiol ; 9: 3022, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619121

RESUMO

High-risk human papillomavirus (HR-HPV) infection is not a sufficient condition for cervical cancer development because most infections are benign and naturally cleared. Epidemiological studies revealed that tobacco smoking is a cofactor with HR-HPV for cervical cancer initiation and progression, even though the mechanism by which tobacco smoke cooperates with HR-HPV in this malignancy is poorly understood. As HR-HPV E6/E7 oncoproteins overexpressed in cervical carcinomas colocalize with cigarette smoke components (CSC), in this study we addressed the signaling pathways involved in a potential interaction between both carcinogenic agents. Cervical cancer-derived cell lines, CaSki (HPV16; 500 copies per cell) and SiHa (HPV16; 2 copies per cell), were acutely exposed to CSC at various non-toxic concentrations and we found that E6 and E7 levels were significantly increased in a dose-dependent manner. Using a reporter construct containing the luciferase gene under the control of the full HPV16 long control region (LCR), we also found that p97 promoter activity is dependent on CSC. Non-synonymous mutations in the LCR-resident TPA (12-O-tetradecanoylphorbol 13-acetate)-response elements (TRE) had significantly decreased p97 promoter activation. Phosphoproteomic arrays and specific inhibitors revealed that CSC-mediated E6/E7 overexpression is at least in part reliant on EGFR phosphorylation. In addition, we showed that the PI3K/Akt pathway is crucial for CSC-induced E6/E7 overexpression. Finally, we demonstrated that HPV16 E6/E7 overexpression is mediated by JUN. overexpression, c-Jun phosphorylation and recruitment of this transcription factor to TRE sites in the HPV16 LCR. We conclude that acute exposure to tobacco smoke activates the transcription of HPV16 E6 and E7 oncogenes through p97 promoter activation, which involves the EGFR/PI3K/Akt/C-Jun signaling pathway activation in cervical cancer cells.

19.
Cancer Res ; 78(9): 2383-2395, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440171

RESUMO

Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.


Assuntos
Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-3/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 7(1): 4243, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652618

RESUMO

Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.


Assuntos
Anexina A2/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Neoplasias/patologia , Biblioteca de Peptídeos , Peptídeos/farmacologia , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa