Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Biochem ; 454(1-2): 139-152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30353496

RESUMO

Heart failure (HF) is a functional lack of myocardial performance due to a loss of molecular control over increases in calcium and ROS, resulting in proteolytic degradative advances and cardiac remodeling. Mitochondria are the molecular powerhouse of cells, shifting the sphere of cardiomyocyte stability and performance. Functional mitochondria rely on the molecular abilities of safety factors such as TFAM to maintain physiological parameters. Mitochondrial transcription factor A (TFAM) creates a mitochondrial nucleoid structure around mtDNA, protecting it from mutation, inhibiting NFAT (ROS activator/hypertrophic stimulator), and transcriptionally activates Serca2a to decrease calcium mishandling. Calpain1 and MMP9 are proteolytic degratory factors that play a major role in cardiomyocyte decline in HF. Current literature depicts major decreases in TFAM as HF progresses. We aim to assess TFAM function against Calpain1 and MMP9 proteolytic activity and its role in cardiac remodeling. To this date, no publication has surfaced describing the effects of aortic banding (AB) as a surgical HF model in TFAM-TG mice. HF models were created via AB in TFAM transgenic (TFAM-TG) and C57BLJ-6 (WT) mice. Eight weeks post AB, functional analysis revealed a successful banding procedure, resulting in cardiac hypertrophy as observed via echocardiography. Pulse wave and color doppler show increased aortic flow rates as well as turbulent flow at the banding site. Preliminary results of cardiac tissue immuno-histochemistry of HF-control mice show decreased TFAM and compensatory increases in Serca2a fluorescent expression, along with increased Calpain1 and MMP9 expression. Protein, RNA, and IHC analysis will further assess TFAM-TG results post-banding. Echocardiography shows more cardiac stability and functionality in HF-induced TFAM-TG mice than the control counterpart. These findings complement our published in vitro results. Overall, this suggests that TFAM has molecular therapeutic potential to reduce protease expression.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Proteínas de Grupo de Alta Mobilidade/fisiologia , Animais , Calpaína/genética , Cardiomegalia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Transgênicos , Miocárdio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Regulação para Cima
2.
Pediatr Pulmonol ; 58(3): 825-833, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444736

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a multisystem disease with progressive deterioration. Recently, CF transmembrane conductance regulator (CFTR) modulator therapies were introduced that repair underlying protein defects. Objective of this study was to determine the impact of elexacaftor-tezacaftor-ivacaftor (ETI) on clinical parameters and inflammatory responses in people with CF (pwCF). METHODS: Lung function (FEV1 ), body mass index (BMI) and microbiologic data were collected at initiation and 3-month intervals for 1 year. Blood was analyzed at baseline and 6 months for cytokines and immune cell populations via flow cytometry and compared to non-CF controls. RESULTS: Sample size was 48 pwCF, 28 (58.3%) males with a mean age of 28.8 ± 10.7 years. Significant increases in %predicted FEV1 and BMI were observed through 6 months of ETI therapy with no change thereafter. Changes in FEV1 and BMI at 3 months were significantly correlated (r = 57.2, p < 0.01). There were significant reductions in Pseudomonas and Staphylococcus positivity (percent of total samples) in pwCF through 12 months of ETI treatment. Healthy controls (n = 20) had significantly lower levels of circulating neutrophils, interleukin (IL)-6, IL-8, and IL-17A and higher levels of IL-13 compared to pwCF at baseline (n = 48). After 6 months of ETI, pwCF had significant decreases in IL-8, IL-6, and IL-17A levels and normalization of peripheral blood immune cell composition. CONCLUSIONS: In pwCF, ETI significantly improved clinical outcomes, reduced systemic pro-inflammatory cytokines, and restored circulating immune cell composition after 6 months of therapy.


Assuntos
Fibrose Cística , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Feminino , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Interleucina-17/metabolismo , Interleucina-17/uso terapêutico , Interleucina-8/metabolismo , Interleucina-8/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Citocinas/metabolismo , Mutação
3.
Front Oral Health ; 3: 981343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046121

RESUMO

Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.

4.
Front Immunol ; 12: 707096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456916

RESUMO

Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Epinefrina/metabolismo , Neutrófilos/metabolismo , Infecções por Pasteurellaceae/metabolismo , Periodontite/microbiologia , Sobrevivência Celular/fisiologia , Humanos
5.
PLoS One ; 6(6): e21280, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701585

RESUMO

We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities.


Assuntos
Bactérias/genética , Bactérias/classificação , Humanos , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Boca/microbiologia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa