Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623234

RESUMO

In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.


Assuntos
Proteínas Argonautas/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Ribonuclease III/metabolismo , Tombusviridae/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tombusviridae/genética
2.
Mol Plant Microbe Interact ; 31(11): 1134-1144, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29781763

RESUMO

Despite the fact that replication of plus-strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants or biological significance of such subcellular localization remains elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Consistently with these functions, p37 was detected in the cytoplasm of plant cells, although it was also present in the nucleus and, particularly, in the nucleolus. Here, we searched for further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family-main cellular transporters for nucleo-cytoplasmic traffic of proteins-and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through downregulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.


Assuntos
Regulação Viral da Expressão Gênica , Nicotiana/virologia , Doenças das Plantas/virologia , Tombusviridae/genética , Proteínas Virais/metabolismo , alfa Carioferinas/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporter , Filogenia , Transporte Proteico , Interferência de RNA , Nicotiana/genética , Tombusviridae/fisiologia , Proteínas Virais/genética , Montagem de Vírus , alfa Carioferinas/genética
3.
J Biol Chem ; 290(5): 3106-20, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505185

RESUMO

Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.


Assuntos
Glicina/química , Vírus de Plantas/genética , Triptofano/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia de Fluorescência , Interferência de RNA , RNA Interferente Pequeno
4.
Plants (Basel) ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893605

RESUMO

To establish productive infections, viruses must be able both to subdue the host metabolism for their own benefit and to counteract host defences. This frequently results in the establishment of viral-host protein-protein interactions that may have either proviral or antiviral functions. The study of such interactions is essential for understanding the virus-host interplay. Plant viruses with RNA genomes are typically translated, replicated, and encapsidated in the cytoplasm of infected cells. Despite this, a significant array of their encoded proteins has been reported to enter the nucleus, often showing high accumulation at subnuclear structures such as the nucleolus and/or Cajal bodies. However, the biological significance of such a distribution pattern is frequently unknown. Here, we explored whether the nucleolar/Cajal body localization of protein p37 of Pelargonium line pattern virus (PLPV, genus Pelarspovirus, family Tombusviridae), might be related to potential interactions with the nucleolar/Cajal body marker proteins, fibrillarin and coilin. The results revealed that p37, which has a dual role as coat protein and as suppressor of RNA silencing, a major antiviral system in plants, is able to associate with these cellular factors. Analysis of (wildtype and/or mutant) PLPV accumulation in plants with up- or downregulated levels of fibrillarin or coilin have suggested that the former might be involved in an as yet unknown antiviral pathway, which may be targeted by p37. The results suggest that the growing number of functions uncovered for fibrillarin can be wider and may prompt future investigations to unveil the plant antiviral responses in which this key nucleolar component may take part.

5.
Biology (Basel) ; 11(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552310

RESUMO

Pepper vein yellows virus 5 (PeVYV-5) belongs to a group of emerging poleroviruses (family Solemoviridae) which pose a risk to pepper cultivation worldwide. Since its first detection in Spain in 2013 and the determination of the complete genome sequence of an isolate in 2018, little is known on the presence, genomic variation and molecular properties of this pathogen. As other members of genus Polerovirus, PeVYV-5 encodes a P0 protein that was predicted to act as viral suppressor of RNA silencing (VSR), one of the major antiviral defense mechanisms in plants. The results of the present work have indicated that PeVYV-5 P0 is a potent VSR, which is able to induce the degradation of Argonaute (AGO) endonucleases, the main effectors of RNA silencing. New viral isolates have been identified in samples collected in 2020-2021 and sequencing of their P0 gene has revealed limited heterogeneity, suggesting that the protein is under negative selection. Analysis of natural and engineered P0 variants has pinpointed distinct protein motifs as critical for the VSR role. Moreover, a positive correlation between the VSR activity of the protein and its capability to promote AGO degradation could be established, supporting that such activity essentially relies on the clearance of core components of the RNA silencing machinery.

6.
Biology (Basel) ; 9(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353984

RESUMO

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.

7.
Virology ; 501: 136-146, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27915129

RESUMO

Pelargonium line pattern virus (PLPV, Tombusviridae) normally establishes systemic, low-titered and asymptomatic infections in its hosts. This type of interaction may be largely determined by events related to RNA silencing, a major antiviral mechanism in plants. This mechanism is triggered by double or quasi double-stranded (ds) viral RNAs which are cut by DCL ribonucleases into virus small RNAs (vsRNAs). Such vsRNAs are at the core of the silencing process as they guide sequence-specific RNA degradation Host RNA dependent-RNA polymerases (RDRs), and particularly RDR6, strengthen antiviral silencing by promoting biosynthesis of secondary vsRNAs. To approach PLPV-host relationship, here we have characterized the vsRNAs that accumulate in PLPV-infected Nicotiana benthamiana. Such accumulation was found unprecedented high despite DCLs were not induced in infected tissue and neither vsRNA generation nor PLPV infection was apparently affected by RDR6 impairment. From the obtained data, triggers and host factors likely involved in anti-PLPV silencing are proposed.


Assuntos
Nicotiana/enzimologia , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleases/metabolismo , Tombusviridae/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vírus de Plantas/genética , Interferência de RNA , RNA não Traduzido/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Ribonucleases/genética , Nicotiana/genética , Tombusviridae/genética
8.
PLoS One ; 11(4): e0152593, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27043436

RESUMO

Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions.


Assuntos
Regiões 5' não Traduzidas , Elementos Facilitadores Genéticos , Conformação de Ácido Nucleico , Pelargonium , Biossíntese de Proteínas , RNA Viral/metabolismo , Tombusviridae/metabolismo , RNA Viral/genética , Tombusviridae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa