Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121622, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972185

RESUMO

Land-use land-cover (LULC) change contributes to major ecological impacts, particularly in areas undergoing land abandonment, inducing modifications on habitat structure and species distributions. Alternative land-use policies are potential solutions to alleviate the negative impacts of contemporary tendencies of LULC change on biodiversity. This work analyzes these tendencies in the Montesinho Natural Park (Portugal), an area representative of European abandoned mountain rural areas. We built ecological niche models for 226 species of vertebrates (amphibians, reptiles, birds, and mammals) and vascular plants, using a consensus modelling approach available in the R package 'biomod2'. We projected the models to contemporary (2018) and future (2050) LULC scenarios, under four scenarios aiming to secure relevant ecosystem services and biodiversity conservation for 2050: an afforestation and a rewilding scenario, focused on climate-smart management strategies, and a farmland and an agroforestry recovery scenario, based on re-establishing human traditional activities. We quantified the influences of these scenarios on biodiversity through species habitat suitability changes for 2018-2050. We analyzed how these management strategies could influence indices of functional diversity (functional richness, functional evenness and functional dispersion) within the park. Habitat suitability changes revealed complementary patterns among scenarios. Afforestation and rewilding scenarios benefited more species adapted to habitats with low human influence, such as forests and open woodlands. The highest functional richness and dispersion was predicted for rewilding scenarios, which could improve landscape restoration and provide opportunities for the expansion and recolonization of forest areas by native species. The recovery of traditional farming and agroforestry activities results in the lowest values of functional richness, but these strategies contribute to complex landscape matrices with diversified habitats and resources. Moreover, this strategy could offer opportunities for fire suppression and increase landscape fire resistance. An integrative approach reconciling rewilding initiatives with the recovery of extensive agricultural and agroforestry activities is potentially an harmonious strategy for supporting the provision of ecosystem services while securing biodiversity conservation and functional diversity within the natural park.

2.
Remote Sens Environ ; 280: 113198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36090616

RESUMO

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.

3.
Biodivers Data J ; 12: e118854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628455

RESUMO

Background: The special area of conservation Montesinho/Nogueira (SAC-MN) is a key area for biodiversity conservation in the Iberian Peninsula. Covering an area of approximately 1081 km² in the northeast of Portugal mainland, the SAC-MN is home to a wide range of species, including several endemic and endangered species and priority habitats. Despite its ecological significance and importance for conservation, there is a lack of publicly available biodiversity data, which urges the need to create a comprehensive and up-to-date biodiversity dataset for the SAC-MN. New information: To bridge the knowledge gap on biodiversity in SAC-MN, we undertook a thorough data collection process, including species occurrence records and conservation status information at regional (Portugal) and European levels, from multiple sources. We collected and compiled this information for five major taxonomic groups (amphibians, birds, flora - vascular plants, mammals and reptiles) in SAC-MN, resulting in a total of 31,871 records with 1,312 documented species. In addition, we developed an easy-to-navigate web-based geographic information system (Web GIS). In this article, we present an in-depth report on the process of compiling and preparing data, as well as the development and design of our Web GIS to increase awareness and enhance understanding of the importance of preserving biodiversity in SAC-MN.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa