RESUMO
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Animais , Humanos , Camundongos , Quinase 2 de Adesão Focal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Receptores Toll-LikeRESUMO
Sézary syndrome (SS) is an aggressive form of cutaneous T-cell lymphoma (CTCL) characterized by the presence of circulating malignant CD4+ T cells (Sézary cells) with many complex changes in the genome, transcriptome and epigenome. Epigenetic dysregulation seems to have an important role in the development and progression of SS as it was shown that SS cells are characterized by widespread changes in DNA methylation. In this study, we show that the transmembrane protein coding gene TMEM244 is ectopically expressed in all SS patients and SS-derived cell lines and, to a lower extent, in mycosis fungoides and in a fraction of T-cell lymphomas, but not in B-cell malignancies and mononuclear cells of healthy individuals. We show that in patient samples and in the T-cell lines TMEM244 expression is negatively correlated with the methylation level of its promoter. Furthermore, we demonstrate that TMEM244 expression can be activated in vitro by the CRISPR-dCas9-induced specific demethylation of TMEM244 promoter region. Since both, TMEM244 expression and its promoter demethylation, are not detected in normal lymphoid cells, they can be potentially used as markers in Sézary syndrome and some other T-cell lymphomas.
Assuntos
Metilação de DNA , Regulação da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Síndrome de Sézary/genética , Idoso , Idoso de 80 Anos ou mais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Vetores Genéticos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/metabolismo , Masculino , Proteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Micose Fungoide/genética , Micose Fungoide/metabolismo , Proteínas de Neoplasias/biossíntese , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Síndrome de Sézary/metabolismoRESUMO
BACKGROUND: Epigenetics is one of the factors shaping natural variability observed among human populations. A small proportion of heritable inter-population differences are observed in the context of both the genome-wide methylation level and the methylation status of individual CpG sites. It has been demonstrated that a limited number of carefully selected differentially methylated sites may allow discrimination between main human populations. However, most of the few published results have been performed exclusively on B-lymphocyte cell lines. RESULTS: The goal of our study was to identify a set of CpG sites sufficient to discriminate between populations of European and Chinese ancestry based on the difference in the DNA methylation profile not only in cell lines but also in primary cell samples. The preliminary selection of CpG sites differentially methylated in these two populations (pop-CpGs) was based on the analysis of two groups of commercially available ethnically-specific B-lymphocyte cell lines, performed using Illumina Infinium Human Methylation 450 BeadChip Array. A subset of 10 pop-CpGs characterized by the best differentiating criteria (|Mdiff| > 1, q < 0.05; lack of the confounding genomic features), and 10 additional CpGs in their immediate vicinity, were further tested using pyrosequencing technology in both B-lymphocyte cell lines and in the primary samples of the peripheral blood representing two analyzed populations. To assess the population-discriminating potential of the selected set of CpGs (further referred to as "composite pop (CEU-CHB)-CpG marker"), three classification methods were applied. The predictive ability of the composite 8-site pop (CEU-CHB)-CpG marker was assessed using 10-fold cross-validation method on two independent sets of samples. CONCLUSIONS: Our results showed that less than 10 pop-CpG sites may distinguish populations of European and Chinese ancestry; importantly, this small composite pop-CpG marker performs well in both lymphoblastoid cell lines and in non-homogenous blood samples regardless of a gender.
Assuntos
Ilhas de CpG , Metilação de DNA , Genética Populacional , Adulto , Linhagem Celular , China , Europa (Continente) , Feminino , Genética Populacional/métodos , Humanos , Leucócitos Mononucleares , MasculinoRESUMO
Loss of B cell-specific transcription factors (TFs) and the resulting loss of B-cell phenotype of Hodgkin and Reed-Sternberg (HRS) cells is a hallmark of classical Hodgkin lymphoma (cHL). Here we have analysed two members of ETS domain containing TFs, ELF1 and ELF2, regarding (epi)genomic changes as well as gene and protein expression. We observed absence or lower levels of ELF1 protein in HRS cells of 31/35 (89%) cases compared to the bystander cells and significant (P < 0·01) downregulation of the gene on mRNA as well as protein level in cHL compared to non-cHL cell lines. However, no recurrent loss of ELF2 protein was observed. Moreover, ELF1 was targeted by heterozygous deletions combined with hypermethylation of the remaining allele(s) in 4/7 (57%) cell lines. Indeed, DNA hypermethylation (range 95-99%, mean 98%) detected in the vicinity of the ELF1 transcription start site was found in all 7/7 (100%) cHL cell lines. Similarly, 5/18 (28%) analysed primary biopsies carried heterozygous deletions of the gene. We demonstrate that expression of ELF1 is impaired in cHL through genetic and epigenetic alterations, and thus, it may represent an additional member of a TF network whose downregulation contributes to the loss of B-cell phenotype of HRS cells.
Assuntos
Motivo ETS , Deleção de Genes , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Biópsia , Linhagem Celular Tumoral , Metilação de DNA , Motivo ETS/genética , Heterozigoto , Doença de Hodgkin/metabolismo , Humanos , Imuno-Histoquímica , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Classic Hodgkin Lymphoma (cHL) is a tumor composed of rare malignant Hodgkin and Reed-Sternberg (HRS) cells nested within a T-cell rich inflammatory immune infiltrate. cHL is associated with Epstein-Barr Virus (EBV) in 25% of cases. The specific contributions of EBV to the pathogenesis of cHL remain largely unknown, in part due to technical barriers in dissecting the tumor microenvironment (TME) in high detail. Herein, we applied multiplexed ion beam imaging (MIBI) spatial pro-teomics on 6 EBV-positive and 14 EBV-negative cHL samples. We identify key TME features that distinguish between EBV-positive and EBV-negative cHL, including the relative predominance of memory CD8 T cells and increased T-cell dysfunction as a function of spatial proximity to HRS cells. Building upon a larger multi-institutional cohort of 22 EBV-positive and 24 EBV-negative cHL samples, we orthogonally validated our findings through a spatial multi-omics approach, coupling whole transcriptome capture with antibody-defined cell types for tu-mor and T-cell populations within the cHL TME. We delineate contrasting transcriptomic immunological signatures between EBV-positive and EBV-negative cases that differently impact HRS cell proliferation, tumor-immune interactions, and mecha-nisms of T-cell dysregulation and dysfunction. Our multi-modal framework enabled a comprehensive dissection of EBV-linked reorganization and immune evasion within the cHL TME, and highlighted the need to elucidate the cellular and molecular fac-tors of virus-associated tumors, with potential for targeted therapeutic strategies.
RESUMO
MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1.
Assuntos
Doença de Hodgkin , Linfoma de Células B , Linfoma não Hodgkin , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Hodgkin/patologia , Linhagem Celular , Centro Germinativo/patologia , Linfoma de Células B/genética , Linfoma não Hodgkin/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismoRESUMO
Classical Hodgkin lymphoma (cHL) is one of the most prevalent lymphomas with a unique cell composition compared to other lymphoma entities. Rare, malignant Hodgkin and Reed-Sternberg (HRS) cells embedded with an extensive but ineffective immune infiltration were previously characterized by a large number of genetic and epigenetic alterations. Recently, microRNA profiling studies highlighted the importance of small non-coding RNA in cHL. This review summarizes available literature data and provides a detailed comparison of four studies where cHL cell lines and microdissected HRS cells were used. Several microRNAs were found to be consistently up- (let-7-f, mir-9, mir-21, mir-23a, mir-27a, mir-155, and mir-196a) or downregulated (mir-138 and mir-150) in cHL. These deregulated microRNAs are involved in the processes crucial for cHL pathogenesis, such as impaired B cell development (mir-9, mir-150, and mir-155), NFκB hyperactivation (mir-155 and mir-196a), and immune evasion (mir-138). Therefore, the deregulation of microRNA expression can be considered a complementary mechanism to genetic alterations promoting lymphomagenesis. Moreover, the expression of let-7f, mir-9 and mir-27a is specific for cHL and can serve as a biomarker to distinguish this lymphoma from other B cell lymphomas. However, additional in-depth and high throughput analysis of microRNA expression in HRS cells is necessary to decipher the complete picture of microRNA in cHL.
Assuntos
Doença de Hodgkin , MicroRNAs , Doença de Hodgkin/genética , Humanos , MicroRNAs/genética , Células de Reed-SternbergRESUMO
A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.
RESUMO
Alterations of the cell cycle checkpoints lead to uncontrolled cell growth and result in tumorigenesis. One of the genes essential for cell proliferation and cell cycle regulation is CDK1. This makes it a potential target in cancer therapy. In our previous study we have shown upregulation of this gene in laryngeal squamous cell carcinoma (LSCC). Here we analyze the impact of siRNA-mediated CDK1 knockdown on cell proliferation and viability, measured with cell growth monitoring and colorimetric test (CCK8 assay), respectively. We proved that a reduction of CDK1 expression by more than 50% has no effect on these cellular processes in LSCC cell lines (n=2). Moreover, using microarrays, we analyzed global gene expression deregulation in these cell lines after CDK1 knockdown. We searched for enriched ontologies in the group of identified 137 differentially expressed genes (>2-fold change). Within this group we found 3 enriched pathways: protein binding (GO:0005515), mitotic nuclear division (GO:0007067) and transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) and a group of 11 genes encoding proteins for which interaction with CDK1 was indicated with the use of bioinformatic tools. Among these genes we propose three: CDK6, CALD1 and FYN as potentially dependent on CDK1.
RESUMO
MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3'UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.
Assuntos
Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-maf/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Regiões 3' não Traduzidas , Idoso , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metilação de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-maf/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL.
Assuntos
Epigênese Genética , Genes Supressores de Tumor , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
We have turned our attention to CEACAM6 gene, already described as deregulated in various types of cancer. By using the expression microarrays performed on the set of 16 laryngeal squamous cell carcinoma (LSCC) samples: 11 cell lines and 5 primary tumors we have shown downregulation of CEACAM6 gene as compared to non cancer controls from head and neck region. CEACAM6 gene downregulation, further confirmed by quantitative PCR on 25 LSCC cell lines, was observed in cell lines derived from recurrent tumors in comparison to controls. A significant gene downregulation was observed in cell lines derived from advanced, high grade tumors in comparison to controls. Intrigued by the recurrent transcriptional loss of CEACAM6 we searched for the mechanism potentially responsible for its downregulation and hence we analyzed DNA copy number changes (a-CGH), promoter DNA methylation status and occurrence of gene mutations (in silico). Neither the analysis of gene copy number, nor the mutation screen has shown recurrent deletions or mutations, that could contribute to the observed downregulation of the gene. However, by using bisulfite pyrosequencing, we have shown DNA hypermethylation (mean DNA methylation > 78%) of CEACAM6 promoter region in 9/25 (36%) LSCC cell lines. Importantly, the 5-aza-2-deoxycytidine-induced inhibition of DNA methylation resulted in restoration of CEACAM6 expression in the two LSCC cell lines on mRNA level. In summary, we have shown that recurrent downregulation of CEACAM6 in LSCC is dependent on the gene's promoter DNA methylation and is observed predominantly in large, poorly differentiated tumors and recurrences.
RESUMO
PURPOSE OF REVIEW: To focus on two novel aspects of head and neck squamous cell carcinoma (HNSCC) genetics of special interest: the epithelial-mesenchymal transition (EMT) process, an initial step in tumor progression that finally leads to metastasis formation, by explaining how genes as well as epigenetic factors control this process, and the new diagnostic options based on the analysis of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) that could revolutionize diagnosis in the coming years. RECENT FINDINGS: We present an intriguing recently described group of factors, namely miRNAs, deregulated during EMT. MiRNAs could serve as novel markers of EMT and metastasis formation and are also a potential therapeutic target. Second, we show recent findings on CTC and cfDNA analysis in HNSCC that demonstrate the usefulness of this new diagnostic approach. SUMMARY: We stress the importance of EMT in the context of metastasis formation and the potential of liquid biopsies in clinical practice.
Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/análise , Humanos , Células Neoplásicas CirculantesRESUMO
Hypertensive Disorders of Pregnancy (HDsP) remain leading causes of maternal and perinatal morbidity and mortality. Growing evidence suggests the involvement of epigenetic factors, such as gene-specific and global DNA methylation changes, both in the etiology and as an effect of HDsP. In this study, we investigated the potential association between placental DNA methylation status in selected CpGs of HSD11B2 cortisol level controlling gene, RUNX3 tumor suppressor gene, and long interspersed nucleotide element-1 (LINE-1) repetitive elements and HDsP-preeclampsia (PE), gestational hypertension (GH), and chronic hypertension (CH). Methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ) were used to analyze placental DNA methylation. Plasma and urine cortisol and cortisone levels were measured using high performance liquid chromatography with fluorescence detection (HPLC-FLD), whereas serum progesterone level was determined by electrochemiluminescence immunoassay. The mean percentage of HSD11B2, RUNX3, and LINE-1 methylation was not altered in the placentas of patients with HDsP, as compared to the controls. However, among patients from PE, GH, and CH groups, several significant correlations were observed between the methylation status of HSD11B2, RUNX3, or LINE-1 and children's birth weight, gestational age at delivery, mother's age, and body mass index as well as hormones levels. These results indicate lack of association between methylation status of HSD11B2, RUNX3, or LINE-1 repetitive elements and HDsP. However, association of these parameters with some clinical variables may suggest the role of placental DNA methylation in fetal development and should be further explored.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Metilação de DNA/fisiologia , Hipertensão/metabolismo , Placenta/metabolismo , Proteínas/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Feminino , Humanos , Hipertensão/patologia , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/patologia , Placenta/patologia , Gravidez , Adulto JovemRESUMO
Larynx squamous cell carcinoma (LSCC) is characterized by complex genotypes, with numerous abnormalities in various genes. Despite the progress in diagnosis and treatment of this disease, 5-year survival rates remain unsatisfactory. Therefore, the extended studies are conducted, with the aim to find genes, potentially implicated in this cancer. In this study, we focus on the FAM107A (3p14.3) gene, since we found its significantly reduced expression in LSCC by microarray profiling (Affymetrix U133 Plus 2.0 array). By RT-PCR we have confirmed complete FAM107A downregulation in laryngeal cancer cell lines (15/15) and primary tumors (21/21) and this finding was further supported by FAM107A protein immunohistochemistry (15/15). We further demonstrate that a combined two hit mechanism including loss of 3p and hypermethylation of FAM107A promoter region (in 9/15 cell lines (p < 0.0001) and in 15/21 primary tumors (p < 0.0001)) prevails in the gene transcriptional loss. As a proof of principle, we show that Decitabine - a hypomethylating agent - restores FAM107A expression (5 to 6 fold increase) in the UT-SCC-29 cell line, characterized by high DNA methylation. Therefore, we report the recurrent inactivation of FAM107A in LSCC, what may suggest that the gene is a promising tumor suppressor candidate involved in LSCC development.
Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Laríngeas/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Decitabina/farmacologia , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Metilação/efeitos dos fármacos , Análise em Microsséries , Proteínas de Neoplasias/metabolismo , Estadiamento de Neoplasias , Proteínas Nucleares/agonistas , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras GenéticasRESUMO
BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the most common group among head and neck cancers. LSCC is characterized by a high incidence in Europe. With the aim of better understanding its genetic background we performed global miRNA expression profiling of LSCC cell lines and primary specimens. By this approach we identified a cohort of 33 upregulated and 9 downregulated miRNA genes in LSCC as compared to epithelial no tumor controls. RESULTS: Within this group we identified overexpression of the novel miR-1290 gene not reported in the context of LSCC before. Using a combined bioinformatical approach in connection with functional analysis we delineated two putative target genes of miR-1290 namely ITPR2 and MAF which are significantly downregulated in LSCC. They are interesting candidates for tumor suppressor genes as they are implicated in apoptosis and other processes deregulated in cancer. CONCLUSION: Taken together, we propose miR-1290 as the new oncomiR involved in LSCC pathogenesis. Additionally, we suggest that the oncogenic potential of miR-1290 might be expressed by the involvement in downregulation of its target genes MAF and ITPR2.