Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(3): 2014-2024, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470188

RESUMO

Hypoxia in coastal ecosystems is increasing as a result of water quality declines from nutrient pollution. Hypoxia negatively affects fish populations and marine life, limiting their spawning habitats, population size, and growth. In this study, two approaches were used to understand the effect of hypoxia on the chorusing and reproductive behavior of fishes in estuaries. One approach used a water quality meter integrated with a prototype passive acoustic recorder, developed to monitor dissolved oxygen and fish chorusing simultaneously and continuously at sites with normoxic and hypoxic conditions. In a second approach, passive acoustic recorders were deployed near ambient water quality monitoring stations, monitored by the North Carolina agencies in estuaries where hypoxia occurs periodically. In both approaches, when hypoxia (dissolved oxygen < 4.0 mg/L) occurred, fish chorusing was diminished or ceased. A strong correlation was observed between bottom water dissolved oxygen and the power spectral density in a 100-200 Hz frequency band associated with red drum (Sciaenops ocellatus, Sciaenidae) calling. Passive acoustic monitoring stations and integrated passive acoustic and water quality meters should be used in estuarine hypoxia monitoring efforts to examine the expanding areas of hypoxia and its impact on fish critical spawning habitats.


Assuntos
Ecossistema , Peixes , Animais , Hipóxia , Oxigênio , Acústica
2.
J Environ Manage ; 351: 119606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081090

RESUMO

Cyanobacterial harmful algal blooms (CHABs) have become a persistent seasonal problem in the upper San Francisco Estuary, California also known as the Sacramento-San Joaquin Delta (Delta). The Delta is comprised of a complex network of open water bodies, channels, and sloughs. The terminus of the Stockton Channel is an area identified as a CHAB "hotspot." As CHABs increase in severity, there is an urgent need to better understand CHAB drivers to identify and implement mitigation measures that can be used in an estuarine complex like the Delta. We investigated water quality conditions and nutrient dynamics in the Stockton Channel by measuring nutrients in the water column, sediments, and pore waters. In situ nutrient addition bioassay experiments were used to assess the effects of nutrient enrichment on total algal/cyanobacterial growth and pigment concentrations. In both June and September, relative to unamended controls, total chlorophyll and cyanobacterial pigment concentrations were unaffected by nutrient additions; hence, the study area showed signs of classical hypereutrophication, with ambient nitrogen and phosphorus present in excess of algal growth requirements. A cyanobacterial bloom, dominated by Microcystis spp. was present throughout the study area but was most severe and persistent at the shallowest site at the channel terminus. At this site, Microcystis spp. created water quality conditions that allowed for a prolonged bloom from June through September. While targeted nutrient reductions are recommended for long term mitigation, on a shorter timescale, our findings suggest that physical/mechanical controls are the more promising alternative approaches to reduce the severity of CHABs in the terminus of the Stockton Channel.


Assuntos
Cianobactérias , Microcystis , Proliferação Nociva de Algas , Qualidade da Água , California , Lagos/microbiologia , Eutrofização
3.
Proc Natl Acad Sci U S A ; 117(21): 11566-11572, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385161

RESUMO

Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.


Assuntos
Lagos/química , Nitrogênio/análise , Fósforo/análise , Águas Residuárias/química , Purificação da Água , China , Ecossistema , Monitoramento Ambiental , Purificação da Água/métodos , Purificação da Água/normas , Qualidade da Água/normas
4.
Glob Chang Biol ; 28(7): 2327-2340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995391

RESUMO

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2 ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.


Assuntos
Monitoramento Ambiental , Eutrofização , Animais , Mudança Climática , Monitoramento Ambiental/métodos , Lagos , Vento
5.
Environ Sci Technol ; 55(1): 44-64, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33334098

RESUMO

The global expansion of harmful cyanobacterial blooms (CyanoHABs) poses an increasing threat to public health. CyanoHABs are characterized by the production of toxic metabolites known as cyanotoxins. Human exposure to cyanotoxins is challenging to forecast, and perhaps the least understood exposure route is via inhalation. While the aerosolization of toxins from marine harmful algal blooms (HABs) has been well documented, the aerosolization of cyanotoxins in freshwater systems remains understudied. In recent years, spray aerosol (SA) produced in the airshed of the Laurentian Great Lakes (United States and Canada) has been characterized, suggesting that freshwater systems may impact atmospheric aerosol loading more than previously understood. Therefore, further investigation regarding the impact of CyanoHABs on human respiratory health is warranted. This review examines current research on the incorporation of cyanobacterial cells and cyanotoxins into SA of aquatic ecosystems which experience HABs. We present an overview of cyanotoxin fate in the environment, biological incorporation into SA, existing data on cyanotoxins in SA, relevant collection methods, and adverse health outcomes associated with cyanotoxin inhalation.


Assuntos
Poluição do Ar , Cianobactérias , Canadá , Ecossistema , Proliferação Nociva de Algas , Humanos , Microcistinas/análise , Água
6.
J Environ Manage ; 280: 111755, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334629

RESUMO

The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM.


Assuntos
Ecossistema , Militares , Biodiversidade , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , North Carolina , Água
7.
Limnol Oceanogr ; 65(Suppl 1): S194-S207, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32051648

RESUMO

Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.

8.
J Phycol ; 56(6): 1398-1403, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460090

RESUMO

Harmful cyanobacterial blooms (CyanoHABs) are a rapidly proliferating global problem, threatening the use and sustainability of our freshwater resources. In recent decades, the United States, China, and other developed and developing countries threatened by CyanoHAB expansion have established collaborative efforts aimed at mitigating and managing this environmental and human health problem. However, an escalating negative political climate and restrictive policies on scientific exchange threaten these efforts. In this Perspective, I point to progress that has been made to counter the CyanoHAB problem on U.S.-Chinese fronts through our collaborations, which have been mutually beneficial from research and academic perspectives. Much like global efforts now needed to control pandemics, we are all "in the same boat" when to comes to countering the threat CyanoHABs pose for drinkable, swimmable, and fishable freshwater supplies and human health.


Assuntos
Cianobactérias , Eutrofização , China , Mudança Climática , Água Doce , Lagos
9.
J Environ Manage ; 271: 110971, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579524

RESUMO

The rational eutrophication management largely depends on the knowledge of the dynamics in the dissolved inorganic nutrients especially nitrogen forms which trigger exponential primary productivity in eutrophic systems. The present study investigated the phytoplankton interactions with the dissolved N forms, nitrate (NO3) and ammonium (NH4) in a sub-tropical Yangtze River tributary, China vulnerable to multiple anthropogenic stressors following the impoundment of the largest hydraulic structure, the Three Gorges Dam. Results indicated strong NO3 inhibition by the low NH4 pool exerting toxic effects on the major phytoplankton groups, particularly the Bacilliariophyta (relative abundance < 1%) while significant Cyanophyta proliferation prevailed (relative abundance ≥ 90%). Strong N limitation exacerbated by NH4 deficit and P replete condition characterizes the summer bloom in the tributary. The biomass attenuation kinetics revealed significantly fast NH4 metabolism, half-life (t1/2= 1.4 d, K = 0.00750 ± 0.004 d-1) as the first-order rate adequately fitted into the experimental data although, the second-order rate also demonstrated considerable goodness of fit. The growth responses induced by the Si enrichment potentially suggested possible secondary limitation by Si with the likelihood of intensification should the ecosystem phytoplankton community dominance shifts from Cyanophyta to the Bacilliariophyta. The response of P enrichment on growth was attributed to luxury consumption rather than limitation as responses only became significant towards the end of the study. The study, therefore, presents the first report of biomass ageing rate worthy of incorporation into the recent bloom management protocol for the development of predictive ecosystem dynamics.


Assuntos
Compostos de Amônio/análise , Fitoplâncton , China , Ecossistema , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Estações do Ano
10.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420344

RESUMO

The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems.IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


Assuntos
Água Doce/microbiologia , Lagos/microbiologia , Interações Microbianas/fisiologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Toxinas Bacterianas/metabolismo , Biomassa , China , Técnicas de Cocultura , Meios de Cultura/química , DNA Bacteriano/análise , Genes de RNAr/genética , Microbiota , Microcistinas , Microcystis/genética , Nitrogênio/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento
11.
Environ Sci Technol ; 52(10): 5519-5529, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29656639

RESUMO

Anthropogenic nutrient overenrichment, coupled with rising temperatures, and an increasing frequency of extreme hydrologic events (storms and droughts) are accelerating eutrophication and promoting the expansion of harmful algal blooms (HABs) across the freshwater-to-marine continuum. All HABs-with a focus here on cyanobacterial blooms-pose serious consequences for water supplies, fisheries, recreational uses, tourism, and property values. As nutrient loads grow in watersheds, they begin to compound the effects of legacy stores. This has led to a paradigm shift in our understanding of how nutrients control eutrophication and blooms. Phosphorus (P) reductions have been traditionally prescribed exclusively for freshwater systems, while nitrogen (N) reductions were mainly stressed for brackish and coastal waters. However, because most systems are hydrologically interconnected, single nutrient (e.g., P only) reductions upstream may not necessarily reduce HAB impacts downstream. Reducing both N and P inputs is the only viable nutrient management solution for long-term control of HABs along the continuum. This article highlights where paired physical, chemical, or biological controls may improve beneficial uses in the short term, and offers management strategies that should be enacted across watershed scales to combat the global expansion of HABs across geographically broad freshwater-to-marine continua.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Eutrofização , Água Doce , Nitrogênio , Fósforo
12.
Environ Sci Technol ; 52(19): 11049-11059, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30168717

RESUMO

Harmful cyanobacterial blooms represent an increasing threat to freshwater resources globally. Despite increased research, the physiological basis of how the dominant bloom-forming cyanobacteria, Microcystis spp., proliferate and then maintain high population densities through changing environmental conditions is poorly understood. In this study, we examined the transcriptional profiles of the microbial community in Lake Taihu, China at 9 stations sampled monthly from June to October in 2014. To target Microcystis populations, we collected metatranscriptomic data and mapped reads to the M. aeruginosa NIES 843 genome. Our results revealed significant temporal gene expression patterns, with many genes separating into either early or late bloom clusters. About one-third of genes observed from M. aeruginosa were differentially expressed between these two clusters. Conductivity and nutrient availability appeared to be the environmental factors most strongly associated with these temporal gene expression shifts. Compared with the early bloom season (June and July), genes involved in N and P transport, energy metabolism, translation, and amino acid biosynthesis were down-regulated during the later season (August to October). In parallel, genes involved in regulatory functions as well as transposases and the production of microcystin and extracellular polysaccharides were up-regulated in the later season. Our observation indicates an eco-physiological shift occurs within the Microcystis spp. transcriptome as cells move from the rapid growth of early summer to bloom maintenance in late summer and autumn.


Assuntos
Cianobactérias , Microcystis , China , Lagos , Estações do Ano
13.
Environ Microbiol ; 19(9): 3619-3637, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730710

RESUMO

Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases in several important fish species. Direct and indirect effects Microcystis blooms may have on the Delta food web were investigated. The Microcystis population was tracked for 2 years at six sites throughout the Delta using quantitative PCR. High-throughput amplicon sequencing and colony PCR sequencing revealed the presence of 10 different strains of Microcystis, including 6 different microcystin-producing strains. Shotgun metagenomic analysis identified a variety of Microcystis secondary metabolite pathways, including those for the biosynthesis of: aeruginosin, cyanopeptolin, microginin, microviridin and piricyclamide. A sizable reduction was observed in microbial community diversity during a large Microcystis bloom (H' = 0.61) relative to periods preceding (H' = 2.32) or following (H' = 3.71) the bloom. Physicochemical conditions of the water column were stable throughout the bloom period. The elevated abundance of a cyanomyophage with high similarity to previously sequenced isolates known to infect Microcystis sp. was implicated in the bloom's collapse. Network analysis was employed to elucidate synergistic and antagonistic relationships between Microcystis and other bacteria and indicated that only very few taxa were positively correlated with Microcystis.


Assuntos
Proliferação Nociva de Algas , Microbiota , Microcystis/classificação , Microcystis/isolamento & purificação , Animais , Biodiversidade , DNA Bacteriano/genética , Ecologia , Estuários , Peixes , Cadeia Alimentar , Microcistinas/biossíntese , Microcystis/genética , Microcystis/virologia , Reação em Cadeia da Polimerase em Tempo Real , São Francisco , Microbiologia da Água
14.
Environ Sci Technol ; 51(7): 3776-3783, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263579

RESUMO

To alleviate eutrophication in coastal waters, reducing nitrogen (N) discharge from wastewater treatment plants (WWTPs) by upgrading conventional activated sludge (CAS) to biological nutrient removal (BNR) processes is commonplace. However, despite numerous upgrades and successful reduction of N discharge from WWTPs, eutrophication problems persist. These unexpected observations raise the possibility that some aspects of BNR yield environmental responses as yet overlooked. Here, we report that one of the most common BNR processes, predenitrification, is prone to the production of low-molecular-weight dissolved organic N (LMW-DON), which is highly bioavailable and stimulates phytoplankton blooms. We found that in predenitrification BNR, LMW-DON is released during the post-aerobic step following the preanoxic step, which does not occur in CAS. Consequently, predenitrification systems produced larger amount of LMW-DON than CAS. In estuarine bioassays, predenitrification BNR effluents produced more phytoplankton biomass than CAS effluents despite lower N concentrations. This was also supported by stronger correlations found between phytoplankton biomass and LMW-DON than other N forms. These findings suggest that WWTPs upgraded to predenitrification BNR reduce inorganic N discharge but introduce larger quantities of potent LMW-DON into coastal systems. We suggest reassessing the N-removal strategy for WWTPs to minimize the eutrophication effects of effluents.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Eutrofização , Esgotos , Águas Residuárias
15.
Environ Sci Technol ; 51(22): 13104-13112, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29083877

RESUMO

There is increased focus on nitrogen (N)-containing dissolved organic matter (DOM) as a nutrient source supporting eutrophication in N-sensitive estuarine ecosystems. This is particularly relevant in watersheds undergoing urban and agricultural development, leading to increased dissolved organic N (DON) loading. To understand how this shift in N-loading influences estuarine phytoplankton production, nutrient addition bioassays were conducted in the N-limited Neuse River Estuary, North Carolina from 2014 to 2015. Additions included N-rich DOM sources characteristic of urban and agricultural development, including chicken and turkey litter leachate, wastewater treatment facility effluent, and concentrated river DOM (used as a reference). Each DOM addition was coupled with an inorganic nutrient treatment to account for inorganic nutrient concentrations (NO2/3, NH4, PO4) in each respective DOM addition. Repeated measures analysis of variance (RM-ANOVA) showed that chicken litter leachate stimulated phytoplankton growth greater than its coupled inorganic nutrient treatment. Wastewater treatment facility effluent, turkey litter leachate, and concentrated river DOM did not stimulate phytoplankton growth greater than their respective inorganic nutrient controls. DOM fluorescence (EEM-PARAFAC) indicated the chicken litter contained a biologically reactive fluorescent DOM component, identified as the nonhumic, biologically labile, "N-peak", which may be responsible for stimulating the observed phytoplankton growth in the chicken litter leachate treatments.


Assuntos
Estuários , Fitoplâncton , Nitrogênio , North Carolina , Rios
16.
Environ Sci Technol ; 51(12): 6699-6708, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28570060

RESUMO

Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.


Assuntos
Eutrofização , Fitoplâncton , China , Lagos , Nitrogênio
17.
Environ Sci Technol ; 51(16): 8933-8943, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28650153

RESUMO

Cyanobacterial harmful algal blooms (CyanoHABs) have serious adverse effects on human and environmental health. Herein, we developed a modeling framework that predicts the effect of climate change on cyanobacteria concentrations in large reservoirs in the contiguous U.S. The framework, which uses climate change projections from five global circulation models, two greenhouse gas emission scenarios, and two cyanobacterial growth scenarios, is unique in coupling climate projections with a hydrologic/water quality network model of the contiguous United States. Thus, it generates both regional and nationwide projections useful as a screening-level assessment of climate impacts on CyanoHAB prevalence as well as potential lost recreation days and associated economic value. Our projections indicate that CyanoHAB concentrations are likely to increase primarily due to water temperature increases tempered by increased nutrient levels resulting from changing demographics and climatic impacts on hydrology that drive nutrient transport. The combination of these factors results in the mean number of days of CyanoHAB occurrence ranging from about 7 days per year per waterbody under current conditions, to 16-23 days in 2050 and 18-39 days in 2090. From a regional perspective, we find the largest increases in CyanoHAB occurrence in the Northeast U.S., while the greatest impacts to recreation, in terms of costs, are in the Southeast.


Assuntos
Mudança Climática , Proliferação Nociva de Algas , Cianobactérias , Água Doce , Humanos , Estados Unidos , Qualidade da Água
18.
Environ Sci Technol ; 51(14): 7785-7793, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648051

RESUMO

Cyanobacterial harmful algal blooms (CyanoHABs) are enhanced by anthropogenic pressures, including excessive nutrient (nitrogen, N, and phosphorus, P) inputs and a warming climate. Severe eutrophication in aquatic systems is often manifested as non-N2-fixing CyanoHABs (e.g., Microcystis spp.), but the biogeochemical relationship between N inputs/dynamics and CyanoHABs needs definition. Community biological ammonium (NH4+) demand (CBAD) relates N dynamics to total microbial productivity and NH4+ deprivation in aquatic systems. A mechanistic conceptual model was constructed by combining nutrient cycling and CBAD observations from a spectrum of lakes to assess N cycling interactions with CyanoHABs. Model predictions were supported with CBAD data from a Microcystis bloom in Maumee Bay, Lake Erie, during summer 2015. Nitrogen compounds are transformed to reduced, more bioavailable forms (e.g., NH4+ and urea) favored by CyanoHABs. During blooms, algal biomass increases faster than internal NH4+ regeneration rates, causing high CBAD values. High turnover rates from cell death and remineralization of labile organic matter consume oxygen and enhance denitrification. These processes drive eutrophic systems to NH4+ limitation or colimitation under warm, shallow conditions and support the need for dual nutrient (N and P) control.


Assuntos
Compostos de Amônio , Cianobactérias , Eutrofização , Lagos , Nitrogênio , Fósforo
19.
Environ Microbiol ; 18(2): 316-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26310611

RESUMO

Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa.


Assuntos
Proliferação Nociva de Algas/fisiologia , Lagos/microbiologia , Microcystis/metabolismo , Fixação de Nitrogênio/fisiologia , Fitoplâncton/metabolismo , Biomassa , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Temperatura
20.
Environ Microbiol ; 18(8): 2721-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27059435

RESUMO

Phytoplankton (eutrophication, biogeochemical) models are important tools for ecosystem research and management, but they generally have not been updated to include modern biology. Here, we present a dynamic, mechanistic, molecular-level (i.e. gene, transcript, protein, metabolite) model of Anabaena - nitrogen interaction. The model was developed using the pattern-oriented approach to model definition and parameterization of complex agent-based models. It simulates individual filaments, each with individual cells, each with genes that are expressed to yield transcripts and proteins. Cells metabolize various forms of N, grow and divide, and differentiate heterocysts when fixed N is depleted. The model is informed by observations from 269 laboratory experiments from 55 papers published from 1942 to 2014. Within this database, we identified 331 emerging patterns, and, excluding inconsistencies in observations, the model reproduces 94% of them. To explore a practical application, we used the model to simulate nutrient reduction scenarios for a hypothetical lake. For a 50% N only loading reduction, the model predicts that N fixation increases, but this fixed N does not compensate for the loading reduction, and the chlorophyll a concentration decreases substantially (by 33%). When N is reduced along with P, the model predicts an additional 8% reduction (compared to P only).


Assuntos
Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Eutrofização/fisiologia , Modelos Biológicos , Modelos Moleculares , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Anabaena/genética , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Ecossistema , Lagos , Fitoplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa