Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cogn Neurosci ; 36(5): 916-935, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319885

RESUMO

Cognitive control allows behavior to be guided according to environmental contexts and internal goals. During cognitive control tasks, fMRI analyses typically reveal increased activation in frontal and parietal networks, and EEG analyses reveal increased amplitude of neural oscillations in the delta/theta band (2-3, 4-7 Hz) in frontal electrodes. Previous studies proposed that theta-band activity reflects the maintenance of rules associating stimuli to appropriate actions (i.e., the rule set), whereas delta synchrony is specifically associated with the control over the context for when to apply a set of rules (i.e., the rule abstraction). We tested these predictions using EEG and fMRI data collected during the performance of a hierarchical cognitive control task that manipulated the level of abstraction of task rules and their set-size. Our results show a clear separation of delta and theta oscillations in the control of rule abstraction and of stimulus-action associations, respectively, in distinct frontoparietal association networks. These findings support a model by which frontoparietal networks operate through dynamic, multiplexed neural processes.


Assuntos
Cognição , Ritmo Teta , Humanos , Cognição/fisiologia , Ritmo Teta/fisiologia , Eletroencefalografia/métodos
2.
Neuroimage ; 246: 118782, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879253

RESUMO

Selective attention is a fundamental cognitive mechanism that allows our brain to preferentially process relevant sensory information, while filtering out distracting information. Attention is thought to flexibly gate the communication of irrelevant information through top-down alpha-rhythmic (8-12 Hz) functional connections, which influence early visual processing. However, the dynamic effects of top-down influence on downstream visual processing remain unknown. Here, we used electroencephalography to investigate local and network effects of selective attention while subjects attended to distinct features of identical stimuli. We found that attention-related changes in the functional brain network organization emerge shortly after stimulus onset, accompanied by an overall decrease of functional connectivity. Signatures of attentional selection were evident from a sequential release from alpha-band parietal gating in feature-selective areas. The directed connectivity paths and temporal evolution of this release from gating were consistent with the sensory effect of each feature, providing a neural basis for how visual processing quickly prioritizes relevant information in functionally specialized areas.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletroencefalografia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Filtro Sensorial/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
3.
Neuroimage ; 223: 117354, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916284

RESUMO

Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We discuss how the results may reconcile several theories of selective attention, by showing how ß rhythms support anticipatory information routing through increased network efficiency, while reactive α-band desynchronization patterns and increased α-γ coupling in task-specific sensory areas mediate stimulus-evoked processing of task-relevant signals.


Assuntos
Atenção/fisiologia , Ondas Encefálicas , Encéfalo/fisiologia , Percepção Visual/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/fisiologia , Vias Neurais/fisiologia , Estimulação Luminosa , Adulto Jovem
4.
Neuroimage ; 183: 478-494, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036586

RESUMO

Brain function arises from networks of distributed brain areas whose directed interactions vary at subsecond time scales. To investigate such interactions, functional directed connectivity methods based on nonparametric spectral factorization are promising tools, because they can be straightforwardly extended to the nonstationary case using wavelet transforms or multitapers on sliding time window, and allow estimating time-varying spectral measures of Granger-Geweke causality (GGC) from multivariate data. Here we systematically assess the performance of various nonparametric GGC methods in real EEG data recorded over rat cortex during unilateral whisker stimulations, where somatosensory evoked potentials (SEPs) propagate over known areas at known latencies and therefore allow defining fixed criteria to measure the performance of time-varying directed connectivity measures. In doing so, we provide a comprehensive benchmark evaluation of the spectral decomposition parameters that might influence the performance of wavelet and multitaper approaches. Our results show that, under the majority of parameter settings, nonparametric methods can correctly identify the contralateral primary sensory cortex (cS1) as the principal driver of the cortical network. Furthermore, we observe that, when properly optimized, the approach based on Morlet wavelet provided the best detection of the preferential functional targets of cS1; while, the best temporal characterization of whisker-evoked interactions was obtained with a sliding-window multitaper. In addition, we find that nonparametric methods provide GGC estimates that are robust against signal downsampling. Taken together our results provide a range of plausible application values for the spectral decomposition parameters of nonparametric methods, and show that they are well suited to characterize time-varying directed causal influences between neural systems with good temporal resolution.


Assuntos
Conectoma/métodos , Eletroencefalografia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Rede Nervosa/fisiologia , Processamento de Sinais Assistido por Computador , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Animais , Benchmarking , Conectoma/normas , Eletroencefalografia/normas , Modelos Animais , Ratos , Ratos Wistar , Vibrissas
5.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38328154

RESUMO

The ability to successfully retain and manipulate information in working memory (WM) requires that objects' individual features are bound into cohesive representations; yet, the mechanisms supporting feature binding remain unclear. Binding (or swap) errors, where memorized features are erroneously associated with the wrong object, can provide a window into the intrinsic limits in capacity of WM that represent a key bottleneck in our cognitive ability. We tested the hypothesis that binding in WM is accomplished via neural phase synchrony and that swap errors result from perturbations in this synchrony. Using magnetoencephalography data collected from human subjects in a task designed to induce swap errors, we showed that swaps are characterized by reduced phase-locked oscillatory activity during memory retention, as predicted by an attractor model of spiking neural networks. Further, we found that this reduction arises from increased phase-coding variability in the alpha-band over a distributed network of sensorimotor areas. Our findings demonstrate that feature binding in WM is accomplished through phase-coding dynamics that emerge from the competition between different memories.

6.
Front Hum Neurosci ; 16: 1050605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590069

RESUMO

Transcranial Magnetic Stimulation (TMS) allows for the direct activation of neurons in the human neocortex and has proven to be fundamental for causal hypothesis testing in cognitive neuroscience. By administering TMS concurrently with functional Magnetic Resonance Imaging (fMRI), the effect of cortical TMS on activity in distant cortical and subcortical structures can be quantified by varying the levels of TMS output intensity. However, TMS generates significant fluctuations in the fMRI time series, and their complex interaction warrants caution before interpreting findings. We present the methodological challenges of concurrent TMS-fMRI and a guide to minimize induced artifacts in experimental design and post-processing. Our study targeted two frontal-striatal circuits: primary motor cortex (M1) projections to the putamen and lateral prefrontal cortex (PFC) projections to the caudate in healthy human participants. We found that TMS parametrically increased the BOLD signal in the targeted region and subcortical projections as a function of stimulation intensity. Together, this work provides practical steps to overcome common challenges with concurrent TMS-fMRI and demonstrates how TMS-fMRI can be used to investigate functional brain networks.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 611-615, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945972

RESUMO

Adaptive algorithms based on the Kalman filter are valuable tools to model the dynamic and directed Granger causal interactions between neurophysiological signals simultaneously recorded from multiple cortical regions. Among these algorithms, the General Linear Kalman Filter (GLKF) has proven to be the most accurate and reliable. Here we propose a regularized and smoothed GLKF (spsm-GLKF) with ℓ1 norm penalties based on lasso or group lasso and a fixedinterval smoother. We show that the group lasso penalty promotes sparse solutions by shrinking spurious connections to zero, while the smoothing increases the robustness of the estimates. Overall, our results demonstrate that spsm-GLKF outperforms the original GLKF, and represents a more accurate tool for the characterization of dynamical and sparse functional brain networks.


Assuntos
Algoritmos , Encéfalo , Fatores de Tempo
8.
Data Brief ; 21: 833-851, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417043

RESUMO

Nonparametric methods based on spectral factorization offer well validated tools for estimating spectral measures of causality, called Granger-Geweke Causality (GGC). In Pagnotta et al. (2018) [1] we benchmarked nonparametric GGC methods using EEG data recorded during unilateral whisker stimulations in ten rats; here, we include detailed information about the benchmark dataset. In addition, we provide codes for estimating nonparametric GGC and a simulation framework to evaluate the effects on GGC analyses of potential problems, such as the common reference problem, signal-to-noise ratio (SNR) differences between channels, and the presence of additive noise. We focus on nonparametric methods here, but these issues also affect parametric methods, which can be tested in our framework as well. Our examples allow showing that time reversal testing for GGC (tr-GGC) mitigates the detrimental effects due to SNR imbalance and presence of mixed additive noise, and illustrate that, when using a common reference, tr-GGC unambiguously detects the causal influence׳s dominant spectral component, irrespective of the characteristics of the common reference signal. Finally, one of our simulations provides an example that nonparametric methods can overcome a pitfall associated with the implementation of conditional GGC in traditional parametric methods.

9.
PLoS One ; 13(6): e0198846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889883

RESUMO

Human brain function depends on directed interactions between multiple areas that evolve in the subsecond range. Time-varying multivariate autoregressive (tvMVAR) modeling has been proposed as a way to help quantify directed functional connectivity strengths with high temporal resolution. While several tvMVAR approaches are currently available, there is a lack of unbiased systematic comparative analyses of their performance and of their sensitivity to parameter choices. Here, we critically compare four recursive tvMVAR algorithms and assess their performance while systematically varying adaptation coefficients, model order, and signal sampling rate. We also compared two ways of exploiting repeated observations: single-trial modeling followed by averaging, and multi-trial modeling where one tvMVAR model is fitted across all trials. Results from numerical simulations and from benchmark EEG recordings showed that: i) across a broad range of model orders all algorithms correctly reproduced patterns of interactions; ii) signal downsampling degraded connectivity estimation accuracy for most algorithms, although in some cases downsampling was shown to reduce variability in the estimates by lowering the number of parameters in the model; iii) single-trial modeling followed by averaging showed optimal performance with larger adaptation coefficients than previously suggested, and showed slower adaptation speeds than multi-trial modeling. Overall, our findings identify strengths and weaknesses of existing tvMVAR approaches and provide practical recommendations for their application to modeling dynamic directed interactions from electrophysiological signals.


Assuntos
Algoritmos , Eletroencefalografia , Benchmarking , Encéfalo/fisiologia , Humanos , Modelos Teóricos
10.
Artigo em Inglês | MEDLINE | ID: mdl-26737893

RESUMO

In this study, we compared the brain activation profiles obtained from resting state Magnetoencephalographic (MEG) activity in 15 dyslexic patients with the profiles of 15 normal controls, using power spectral density (PSD) analysis. We first estimated intracranial dipolar MEG sources on a dense grid on the cortical surface and then projected these sources on a standardized atlas with 68 regions of interest (ROIs). Averaging the PSD values of all sources in each ROI across all control subjects resulted in a normative database that was used to convert the PSD values of dyslexic patients into z-scores in eight distinct frequency bands. We found that dyslexic patients exhibited statistically significant overactivation in the delta band (0.1-4 Hz) in the right temporal (entorhinal and insula), left inferior frontal (Broca's area), and right inferior frontal regions. Overactivation may be interpreted as a compensatory mechanism for reading characterizing dyslexic patients. These findings suggest that resting-state MEG activation maps may be used as specific biomarkers that can help with the diagnosis of and assess the efficacy of intervention in dyslexia.


Assuntos
Mapeamento Encefálico , Dislexia/fisiopatologia , Magnetoencefalografia/métodos , Descanso , Feminino , Humanos , Masculino , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-26737894

RESUMO

In this study, we compared the brain activation profiles obtained from resting state Electroencephalographic (EEG) and Magnetoencephalographic (MEG) activity in six mild traumatic brain injury (mTBI) patients and five orthopedic controls, using power spectral density (PSD) analysis. We first estimated intracranial dipolar EEG/MEG sources on a dense grid on the cortical surface and then projected these sources on a standardized atlas with 68 regions of interest (ROIs). Averaging the PSD values of all sources in each ROI across all control subjects resulted in a normative database that was used to convert the PSD values of mTBI patients into z-scores in eight distinct frequency bands. We found that mTBI patients exhibited statistically significant overactivation in the delta, theta, and low alpha bands. Additionally, the MEG modality seemed to better characterize the group of individual subjects. These findings suggest that resting-state EEG/MEG activation maps may be used as specific biomarkers that can help with the diagnosis of and assess the efficacy of intervention in mTBI patients.


Assuntos
Lesões Encefálicas/diagnóstico , Encéfalo/fisiologia , Eletroencefalografia , Magnetoencefalografia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa