Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38867672

RESUMO

Ubiquitination influences the expression of the epithelial Na+ channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and in Fisher Rat Thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaC were both strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see if location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when co-expressed with α and ßENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole-kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total the ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na+ could stimulate ubiquitination. Administration of amiloride to block Na+ entry through the channels did not affect ubiquitination of γENaC in either FRT cells or rat kidney. However, presumed large increases in cellular Na+ produced by monensin in FRT cells or acute Na+ repletion in rats increased ubiquitination and decreased overall ENaC expression.

2.
J Physiol ; 601(7): 1225-1246, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930567

RESUMO

Although hyperpolarization-activated cation (HCN) ion channels are well established to underlie cardiac pacemaker activity, their role in smooth muscle organs remains controversial. HCN-expressing cells are localized to renal pelvic smooth muscle (RPSM) pacemaker tissues of the murine upper urinary tract and HCN channel conductance is required for peristalsis. To date, however, the Ih pacemaker current conducted by HCN channels has never been detected in these cells, raising questions on the identity of RPSM pacemakers. Indeed, the RPSM pacemaker mechanisms of the unique multicalyceal upper urinary tract exhibited by humans remains unknown. Here, we developed immunopanning purification protocols and demonstrate that 96% of isolated HCN+ cells exhibit Ih . Single-molecule STORM to whole-tissue imaging showed HCN+ cells express single HCN channels on their plasma membrane and integrate into the muscular syncytium. By contrast, PDGFR-α+ cells exhibiting the morphology of ICC gut pacemakers were shown to be vascular mural cells. Translational studies in the homologous human and porcine multicalyceal upper urinary tracts showed that contractions and pacemaker depolarizations originate in proximal calyceal RPSM. Critically, HCN+ cells were shown to integrate into calyceal RPSM pacemaker tissues, and HCN channel block abolished electrical pacemaker activity and peristalsis of the multicalyceal upper urinary tract. Cumulatively, these studies demonstrate that HCN ion channels play a broad, evolutionarily conserved pacemaker role in both cardiac and smooth muscle organs and have implications for channelopathies as putative aetiologies of smooth muscle disorders. KEY POINTS: Pacemakers trigger contractions of involuntary muscles. Hyperpolarization-activated cation (HCN) ion channels underpin cardiac pacemaker activity, but their role in smooth muscle organs remains controversial. Renal pelvic smooth muscle (RPSM) pacemakers trigger contractions that propel waste away from the kidney. HCN+ cells localize to murine RPSM pacemaker tissue and HCN channel conductance is required for peristalsis. The HCN (Ih ) current has never been detected in RPSM cells, raising doubt whether HCN+ cells are bona fide pacemakers. Moreover, the pacemaker mechanisms of the unique multicalyceal RPSM of higher order mammals remains unknown. In total, 97% of purified HCN+ RPSM cells exhibit Ih . HCN+ cells integrate into the RPSM musculature, and pacemaker tissue peristalsis is dependent on HCN channels. Translational studies in human and swine demonstrate HCN channels are conserved in the multicalyceal RPSM and that HCN channels underlie pacemaker activity that drives peristalsis. These studies provide insight into putative channelopathies that can underlie smooth muscle dysfunction.


Assuntos
Canalopatias , Humanos , Camundongos , Animais , Suínos , Canalopatias/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Rim/metabolismo , Músculo Liso/fisiologia , Cátions/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Mamíferos/metabolismo
3.
Am J Physiol Renal Physiol ; 325(2): F224-F234, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318989

RESUMO

The impact of chronic dietary K+ loading on proximal tubule (PT) function was measured using free-flow micropuncture along with measurements of overall kidney function, including urine volume, glomerular filtration rate, and absolute and fractional Na+ and K+ excretion in the rat. Feeding animals a diet with 5% KCl [high K+ (HK)] for 7 days reduced glomerular filtration rate by 29%, increased urine volume by 77%, and increased absolute K+ excretion by 202% compared with rats on a 1% KCl [control K+ (CK)] diet. HK did not change absolute Na+ excretion but significantly increased fraction excretion of Na+ (1.40% vs. 0.64%), indicating that fractional Na+ absorption is reduced by HK. PT reabsorption was assessed using free-flow micropuncture in anesthetized animals. At 80% of the accessible length of the PT, measurements of inulin concentration indicated volume reabsorption of 73% and 54% in CK and HK, respectively. At the same site, fractional PT Na+ reabsorption was 66% in CK animals and 37% in HK animals. Fractional PT K+ reabsorption was 66% in CK and 37% in HK. To assess the role of Na+/H+ exchanger isoform 3 (NHE3) in mediating these changes, we measured NHE3 protein expression in total kidney microsomes as well as surface membranes using Western blots. We found no significant changes in protein in either cell fraction. Expression of the Ser552 phosphorylated form of NHE3 was also similar in CK and HK animals. Reduction in PT transport may facilitate K+ excretion and help balance Na+ excretion by shifting Na+ reabsorption from K+-reabsorbing to K+-secreting nephron segments.NEW & NOTEWORTHY In rats fed a diet rich in K+, proximal tubules reabsorbed less fluid, Na+, and K+ compared with those in animals on a control diet. Glomerular filtration rates also decreased, probably due to glomerulotubular feedback. These reductions may help to maintain balance of the two ions simultaneously by shifting Na+ reabsorption to K+-secreting nephron segments.


Assuntos
Túbulos Renais Proximais , Néfrons , Ratos , Animais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Túbulos Renais Proximais/metabolismo , Néfrons/metabolismo , Rim/metabolismo , Sódio/metabolismo , Taxa de Filtração Glomerular
4.
Pflugers Arch ; 473(11): 1749-1760, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455480

RESUMO

We compared the regulation of the NaCl cotransporter (NCC) in adaptation to a low-K (LK) diet in male and female mice. We measured hydrochlorothiazide (HCTZ)-induced changes in urine volume (UV), glomerular filtration rate (GFR), absolute (ENa, EK), and fractional (FENa, FEK) excretion in male and female mice on control-K (CK, 1% KCl) and LK (0.1% KCl) diets for 7 days. With CK, NCC-dependent ENa and FENa were larger in females than males as observed previously. However, with LK, HCTZ-induced ENa and FENa increased in males but not in females, abolishing the sex differences in NCC function as observed in CK group. Despite large diuretic and natriuretic responses to HCTZ, EK was only slightly increased in response to the drug when animals were on LK. This suggests that the K-secretory apparatus in the distal nephron is strongly suppressed under these conditions. We also examined LK-induced changes in Na transport protein expression by Western blotting. Under CK conditions females expressed more NCC protein, as previously reported. LK doubled both total (tNCC) and phosphorylated NCC (pNCC) abundance in males but had more modest effects in females. The larger effect in males abolished the sex-dependence of NCC expression, consistent with the measurements of function by renal clearance. LK intake did not change NHE3, NHE2, or NKCC2 expression, but reduced the amount of the cleaved (presumably active) form of γENaC. LK reduced plasma K to lower levels in females than males. These results indicated that males had a stronger NCC-mediated adaptation to LK intake than females.


Assuntos
Cátions/metabolismo , Transporte de Íons/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Tiazidas/farmacologia , Animais , Diuréticos/farmacologia , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Caracteres Sexuais , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
5.
Am J Physiol Renal Physiol ; 320(3): F485-F491, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522411

RESUMO

Extracellular proteases can activate the epithelial Na channel (ENaC) by cleavage of the γ subunit. Here, we investigated the cleavage state of the channel in the kidneys of mice and rats on a low-salt diet. We identified the cleaved species of channels expressed in Fisher rat thyroid cells by coexpressing the apical membrane-bound protease channel-activating protease 1 (CAP1; prostasin). To compare the peptides produced in the heterologous system with those in the mouse kidney, we treated both lysates with PNGaseF to remove N-linked glycosylation. The apparent molecular mass of the smallest COOH-terminal fragment of γENaC (52 kDa) was indistinguishable from that of the CAP1-induced species in Fisher rat thyroid cells. Similar cleaved peptides were observed in total and cell surface fractions of the rat kidney. This outcome suggests that most of the subunits at the surface have been processed by extracellular proteases. This was confirmed using nonreducing gels, in which the NH2- and COOH-terminal fragments of γENaC are linked by a disulfide bond. Under these conditions, the major cleaved form in the rat kidney had an apparent molecular mass of 56 kDa, ∼4 kDa lower than that of the full-length form, consistent with excision of a short peptide by two proteolytic events. We conclude that the most abundant γENaC species in the apical membrane of rat and mouse kidneys on a low-Na diet is the twice-cleaved, presumably activated form.NEW & NOTEWORTHY We have identified the major aldosterone-dependent cleaved form of the epithelial Na channel (ENaC) γ subunit in the kidney as a twice-cleaved peptide. This form appears to be identical in size with a subunit cleaved in vitro by the extracellular protease channel-activating protease 1 (prostasin). In the absence of reducing agents, it has an overall molecular mass less than that of the intact subunit, consistent with the excision of an inhibitory domain.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Serina Endopeptidases/metabolismo , Sódio/metabolismo , Aldosterona/metabolismo , Animais , Dieta Hipossódica/métodos , Camundongos , Subunidades Proteicas/metabolismo , Proteólise , Ratos
6.
Am J Physiol Renal Physiol ; 318(5): F1113-F1121, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174140

RESUMO

Ubiquitination of the epithelial Na+ channel (ENaC) in epithelial cells may influence trafficking and hormonal regulation of the channels. We assessed ENaC ubiquitination (ub-ENaC) in mouse and rat kidneys using affinity beads to capture ubiquitinated proteins from tissue homogenates and Western blot analysis with anti-ENaC antibodies. Ub-αENaC was observed primarily as a series of proteins of apparent molecular mass of 40-70 kDa, consistent with the addition of variable numbers of ubiquitin molecules primarily to the NH2-terminal cleaved fragment (~30 kDa) of the subunit. No significant Ub-ßENaC was detected, indicating that ubiquitination of this subunit is minimal. For γENaC, the protein eluted from the affinity beads had the same apparent molecular mass as the cleaved COOH-terminal fragment of the subunit (~65 kDa). This suggests that the ubiquitinated NH2 terminus remains attached to the COOH-terminal moiety during isolation through disulfide bonds. Consistent with this, under nonreducing conditions, eluates contained material with increased molecular mass (90-150 kDa). In mice with a Liddle syndrome mutation (ß566X) deleting a putative binding site for the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2, the amount of ub-γENaC was reduced as expected. To assess aldosterone dependence of ubiquitination, we fed rats either control or low-Na+ diets for 7 days before kidney harvest. Na+ depletion increased the amounts of ub-αENaC and ub-γENaC by three- to fivefold, probably reflecting increased amounts of fully cleaved ENaC. We conclude that ubiquitination occurs after complete proteolytic processing of the subunits, contributing to retrieval and/or disposal of channels expressed at the cell surface. Diminished ubiquitination does not appear to be a major factor in aldosterone-dependent ENaC upregulation.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Síndrome de Liddle/metabolismo , Ubiquitinação , Aldosterona/sangue , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Feminino , Síndrome de Liddle/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Proteólise , Ratos Sprague-Dawley
7.
Am J Physiol Renal Physiol ; 319(2): F323-F334, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628540

RESUMO

We investigated the regulation of Na+ and K+ excretion and the epithelial Na+ channel (ENaC) in mice lacking the gene for aldosterone synthase (AS) using clearance methods to assess excretion and electrophysiology and Western blot analysis to test for ENaC activity and processing. After 1 day of dietary Na+ restriction, AS-/- mice lost more Na+ in the urine than AS+/+ mice did. After 1 wk on this diet, both genotypes strongly reduced urinary Na+ excretion, but creatinine clearance decreased only in AS-/- mice. Only AS+/+ animals exhibited increased ENaC function, assessed as amiloride-sensitive whole cell currents in collecting ducts or cleavage of αENaC and γENaC in Western blots. To assess the role of aldosterone in the excretion of a K+ load, animals were fasted overnight and refed with high-K+ or low-K+ diets for 5 h. Both AS+/+ and AS-/- mice excreted a large amount of K+ during this period. In both phenotypes the excretion was benzamil sensitive, indicating increased K+ secretion coupled to ENaC-dependent Na+ reabsorption. However, the increase in plasma K+ under these conditions was much larger in AS-/- animals than in AS+/+ animals. In both groups, cleavage of αENaC and γENaC increased. However, Na+ current measured ex vivo in connecting tubules was enhanced only in AS+/+ mice. We conclude that in the absence of aldosterone, mice can conserve Na+ without ENaC activation but at the expense of diminished glomerular filtration rate. Excretion of a K+ load can be accomplished through aldosterone-independent upregulation of ENaC, but aldosterone is required to excrete the excess K+ without hyperkalemia.


Assuntos
Citocromo P-450 CYP11B2/metabolismo , Canais Epiteliais de Sódio/metabolismo , Potássio/metabolismo , Sódio na Dieta/metabolismo , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Túbulos Renais Coletores/metabolismo , Camundongos , Natriurese/fisiologia
8.
Am J Physiol Renal Physiol ; 317(4): F967-F977, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390232

RESUMO

We studied sex differences in response to high K+ (HK) intake on thiazide-sensitive cation (Na+ and K+) excretion in wild-type (WT) and ANG II receptor subtype 1a (AT1aR) knockout (KO) mice. Renal clearance experiments were performed to examine Na+-Cl- cotransporter (NCC) activity on mice fed with control and HK (5% KCl, 7 days) diets. Hydrochlorothiazide (HCTZ)-induced changes in urine volume, glomerular filtration rate, absolute Na+ and K+ excretion, and fractional excretion were compared. HK-induced changes in NCC, Na+/H+ exchanger isoform 3 (NHE3), and ENaC expression were examined by Western blot analysis. In WT animals under the control diet, HCTZ-induced cation excretion was greater in female animals, reflecting larger increases in Na+ excretion, since there was little sex difference in HCTZ-induced K+ excretion. Under the HK diet, the sex difference in HCTZ-induced cation excretion was reduced because of larger increments in K+ excretion in male animals. The fraction of K+ excretion was 57 ± 5% in male WT animals and 36 ± 4% in female WT animals (P < 0.05), but this difference was absent in AT1aR KO mice. NCC abundance was higher in female animals than in male animals but decreased by similar fractions on HK diet. NHE3 abundance decreased, whereas cleaved forms of γ-ENaC increased, with HK in all groups; these changes were similar in male and female animals and were not significantly affected by AT1aR ablation. These results indicate that, with the HK diet, male animals display greater distal Na+ delivery and greater activation of K+ secretion mechanisms, all suggesting a more powerful male adaptation to HK intake.


Assuntos
Cátions/urina , Diuréticos/farmacologia , Complexo II de Transporte de Elétrons/metabolismo , Hidroclorotiazida/farmacologia , Rim/metabolismo , Potássio/farmacologia , Animais , Feminino , Taxa de Filtração Glomerular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/urina , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Caracteres Sexuais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Urodinâmica
9.
J Physiol ; 596(16): 3585-3602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737520

RESUMO

KEY POINTS: Dietary Na restriction, through the mineralocorticoid aldosterone, acts on epithelial Na channels via both fast (24 h) and slow (5-7 days) mechanisms in the kidney. The fast effect entails increased proteolytic processing and trafficking of channel protein to the apical membrane. It is rapidly reversible by the mineralocorticoid receptor antagonist eplerenone and is largely lost when tubules are studied ex vivo. The slow effect does not require increased processing or surface expression, is refractory to acute eplerenone treatment, and is preserved ex vivo. Both slow and fast effects contribute to Na retention in vivo. Increased Na+ reabsorption in the proximal tubule also promotes Na conservation under conditions of chronic dietary Na restriction, reducing Na+ delivery to the distal nephron. ABSTRACT: Changes in the activity of the epithelial Na channel (ENaC) help to conserve extracellular fluid volume. In rats fed a low-salt diet, proteolytic processing of ENaC increased within 1 day, and was almost maximal after 3 days. The rapid increase in the abundance of cleaved αENaC and γENaC correlated with decreased urinary Na+ excretion and with increased ENaC surface expression. By contrast, ENaC activity, measured ex vivo in isolated cortical collecting ducts, increased modestly after 3 days and required 5 days to reach maximal levels. The mineralocorticoid receptor antagonist eplerenone reversed the increase in cleaved γENaC and induced natriuresis after 1 or 3 days but failed to alter either ENaC currents or Na+ excretion after 7 days of Na restriction. We conclude that Na depletion, through aldosterone, stimulates ENaC via independent fast and slow mechanisms. In vivo, amiloride-induced natriuresis increased after 1 day of Na depletion. By contrast, hydrochlorothiazide (HCTZ)-induced natriuresis decreased gradually over 7 days, consistent with increased ability of ENaC activity to compensate for decreased Na+ reabsorption in the distal convoluted tubule. Administration of amiloride and HCTZ together increased Na+ excretion less in Na-depleted compared to control animals, indicating decreased delivery of Na+ to the distal nephron when dietary Na is restricted. Measurements of creatinine and Li+ clearances indicated that increased Na reabsorption by the proximal tubules is responsible for the decreased delivery. Thus, Na conservation during chronic dietary salt restriction entails enhanced transport by both proximal and distal nephron segments.


Assuntos
Restrição Calórica , Diuréticos/farmacologia , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Natriurese , Trocador 3 de Sódio-Hidrogênio/metabolismo , Sódio/deficiência , Aldosterona/farmacologia , Amilorida/farmacologia , Animais , Canais Epiteliais de Sódio/química , Hidroclorotiazida/farmacologia , Túbulos Renais Distais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Trocador 3 de Sódio-Hidrogênio/antagonistas & inibidores
10.
Am J Physiol Renal Physiol ; 315(4): F1032-F1041, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29923764

RESUMO

Changes in the expression of Na transport proteins were measured in the kidneys of mice with increased dietary K intake for 1 wk. The epithelial Na channel (ENaC) was upregulated, with enhanced expression of full-length and cleaved forms of α-ENaC and cleaved γ-ENaC. At the same time, the amount of the NaCl cotransporter NCC and its phosphorylated form decreased by ~50% and ~80%, respectively. The expression of the phosphorylated form of the Na-K-2Cl cotransporter NKCC2 also decreased, despite an increase in overall protein content. The effect was stronger in males (80%) than in females (40%). This implies that less Na+ is reabsorbed in the thick ascending limb of Henle's loop and distal convoluted tubule along with Cl-, whereas more is reabsorbed in the aldosterone-sensitive distal nephron in exchange for secreted K+. The abundance of the proximal tubule Na/H exchanger NHE3 decreased by ~40%, with similar effects in males and females. Time-course studies indicated that NCC and NHE3 proteins decreased progressively over 7 days on a high-K diet. Expression of mRNA encoding these proteins increased, implying that the decreased protein levels resulted from decreased rates of synthesis or increased rates of degradation. The potential importance of changes in NHE3, NKCC2, and NCC in promoting K+ excretion was assessed with a mathematical model. Simulations indicated that decreased NHE3 produced the largest effect. Regulation of proximal tubule Na+ transport may play a significant role in achieving K homeostasis.


Assuntos
Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
11.
Am J Physiol Renal Physiol ; 312(1): F65-F76, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413200

RESUMO

We examined renal Na and K transporters in mice with deletions in the gene encoding the aldosterone-induced protein SGK1. The knockout mice were hyperkalemic, and had altered expression of the subunits of the epithelial Na channel (ENaC). The kidneys showed decreased expression of the cleaved forms of the γENaC subunit, and the fully glycosylated form of the ßENaC subunits when animals were fed a high-K diet. Knockout animals treated with exogenous aldosterone also had reduced subunit processing and diminished surface expression of ßENaC and γENaC. Expression of the three upstream Na transporters NHE3, NKCC2, and NCC was reduced in both wild-type and knockout mice in response to K loading. The activity of ENaC measured as whole cell amiloride-sensitive current (INa) in principal cells of the cortical collecting duct (CCD) was minimal under control conditions but was increased by a high-K diet to a similar extent in knockout and wild-type animals. INa in the connecting tubule also increased similarly in the two genotypes in response to exogenous aldosterone administration. The activities of both ROMK channels in principal cells and BK channels in intercalated cells of the CCD were unaffected by the deletion of SGK1. Acute treatment of animals with amiloride produced similar increases in Na excretion and decreases in K excretion in the two genotypes. The absence of changes in ENaC activity suggests compensation for decreased surface expression. Altered K balance in animals lacking SGK1 may reflect defects in ENaC-independent K excretion.


Assuntos
Amilorida/metabolismo , Canais Epiteliais de Sódio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio na Dieta/metabolismo , Aldosterona/farmacologia , Animais , Proteínas Imediatamente Precoces/genética , Rim/metabolismo , Túbulos Renais Coletores/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
12.
Am J Physiol Renal Physiol ; 313(1): F62-F73, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356292

RESUMO

We assessed effects of acute volume reductions induced by administration of diuretics in rats. Direct block of Na+ transport produced changes in urinary electrolyte excretion. Adaptations to these effects appeared as alterations in the expression of protein for the distal nephron Na+ transporters NCC and ENaC. Two hours after a single injection of furosemide (6 mg/kg) or hydrochlorothiazide (HCTZ; 30 mg/kg) Na+ and K+ excretion increased but no changes in the content of activated forms of NCC (phosphorylated on residue T53) or ENaC (cleaved γ-subunit) were detected. In contrast, amiloride (0.6 mg/kg) evoked a similar natriuresis that coincided with decreased pT53NCC and increased cleaved γENaC. Alterations in posttranslational membrane protein processing correlated with an increase in plasma K+ of 0.6-0.8 mM. Decreased pT53NCC occurred within 1 h after amiloride injection, whereas changes in γENaC were slower and were blocked by the mineralocorticoid receptor antagonist spironolactone. Increased γENaC cleavage correlated with elevation of the surface expression of the subunit as assessed by in situ biotinylation. Na depletion induced by 2 h of furosemide or HCTZ treatment increases total NCC expression without affecting ENaC protein. However, restriction of Na intake for 10 h (during the day) or 18 h (overnight) increased the abundance of both total NCC and of cleaved α- and γENaC. We conclude that the kidneys respond acutely to hyperkalemic challenges by decreasing the activity of NCC while increasing that of ENaC. They respond to hypovolemia more slowly, increasing Na+ reabsorptive capacities of both of these transporters.


Assuntos
Diuréticos/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Hiperpotassemia/metabolismo , Hipovolemia/metabolismo , Néfrons/efeitos dos fármacos , Potássio/metabolismo , Sódio/metabolismo , Amilorida/farmacologia , Animais , Diuréticos/toxicidade , Canais Epiteliais de Sódio/metabolismo , Feminino , Furosemida/farmacologia , Hidroclorotiazida/farmacologia , Hiperpotassemia/sangue , Hiperpotassemia/induzido quimicamente , Hiperpotassemia/urina , Hipovolemia/sangue , Hipovolemia/induzido quimicamente , Hipovolemia/urina , Masculino , Modelos Biológicos , Néfrons/metabolismo , Fosforilação , Potássio/sangue , Potássio/urina , Ratos Sprague-Dawley , Eliminação Renal/efeitos dos fármacos , Sódio/sangue , Sódio/urina , Membro 3 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Espironolactona/farmacologia
13.
Am J Physiol Renal Physiol ; 313(2): F505-F513, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566500

RESUMO

We studied gender differences in Na+-Cl- cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.


Assuntos
Angiotensina II/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Caracteres Sexuais , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Diurese , Feminino , Hidroclorotiazida , Rim/metabolismo , Masculino , Camundongos Knockout , Natriurese , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
14.
Am J Physiol Renal Physiol ; 308(6): F572-8, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25520012

RESUMO

The acute effects of aldosterone administration on epithelial Na channels (ENaC) in rat kidney were examined using electrophysiology and immunodetection. Animals received a single injection of aldosterone (20 µg/kg body wt), which reduced Na excretion over the next 3 h. Channel activity was assessed in principal cells of cortical collecting ducts as amiloride-sensitive whole cell clamp current (INa). INa averaged 100 pA/cell, 20-30% of that reported for the same preparation under conditions of chronic stimulation. INa was negligible in control animals that did not receive hormone. The acute physiological response correlated with changes in ENaC processing and trafficking. These effects included increases in the cleaved forms of α-ENaC and γ-ENaC, assessed by Western blot, and increases in the surface expression of ß-ENaC and γ-ENaC measured after surface protein biotinylation. These changes were qualitatively and quantitatively similar to those of chronic stimulation. This suggests that altered trafficking to or from the apical membrane is an early response to the hormone and that later increases in channel activity require stimulation of channels residing at the surface.


Assuntos
Aldosterona/fisiologia , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Animais , Biotinilação , Feminino , Técnicas de Patch-Clamp , Potássio/urina , Ratos Sprague-Dawley , Sódio/urina
15.
Am J Physiol Renal Physiol ; 307(9): F1080-7, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25209858

RESUMO

During maturation, the α- and γ-subunits of the epithelial Na+ channel (ENaC) undergo proteolytic processing by furin. Cleavage of the γ-subunit by furin at the consensus site γRKRR143 and subsequent cleavage by a second protease at a distal site strongly activate the channel. For example, coexpression of prostasin with ENaC increases both channel function and cleavage at the γRKRK186 site. We generated a polyclonal antibody that recognizes the region 144-186 in the γ-subunit (anti-γ43) to determine whether prostasin promotes the release of the intervening tract between the putative furin and γRKRK186 cleavage sites. Anti-γ43 precipitated both full-length (93 kDa) and furin-processed (83 kDa) γ-subunits from extracts obtained from oocytes expressing αßHA-γ-V5 channels, but only the full-length (93 kDa) γ-subunit from oocytes expressing αßHA-γ-V5 channels and either wild-type or a catalytically inactive prostasin. Although both wild-type and catalytically inactive prostasin activated ENaCs in an aprotinin-sensitive manner, only wild-type prostasin bound to aprotinin beads, suggesting that catalytically inactive prostasin facilitates the cleavage of the γ-subunit by an endogenous protease in Xenopus oocytes. As dietary salt restriction increases cleavage of the renal γ-subunit, we assessed release of the 43-mer inhibitory tract on rats fed a low-Na+ diet. We found that a low-Na+ diet increased γ-subunit cleavage detected with the anti-γ antibody and dramatically reduced the fraction precipitated with the anti-γ43 antibody. Our results suggest that the inhibitory tract dissociates from the γ-subunit in kidneys from rats on a low-Na+ diet.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Subunidades Proteicas/metabolismo , Serina Endopeptidases/metabolismo , Animais , Feminino , Furina/metabolismo , Células HEK293 , Humanos , Masculino , Oócitos/metabolismo , Ratos Sprague-Dawley , Serina Endopeptidases/genética , Cloreto de Sódio na Dieta/administração & dosagem , Xenopus laevis
16.
Am J Physiol Renal Physiol ; 304(2): F222-32, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23171553

RESUMO

The epithelial Na(+) channel (ENaC) is tightly regulated by sodium intake to maintain whole body sodium homeostasis. In addition, ENaC is inhibited by high levels of intracellular Na(+) [Na(+)](i), presumably to prevent cell Na(+) overload and swelling. However, it is not clear if this regulation is relevant in vivo. We show here that in rats, an acute (4 h) oral sodium load decreases whole-cell amiloride-sensitive currents (I(Na)) in the cortical collecting duct (CCD) even when plasma aldosterone levels are maintained high by infusing the hormone. This was accompanied by decreases in whole-kidney cleaved α-ENaC (2.6 fold), total ß-ENaC (1.7 fold), and cleaved γ-ENaC (6.2 fold). In addition, cell-surface ß- and γ-ENaC expression was measured using in situ biotinylation. There was a decrease in cell-surface core-glycosylated (2.2 fold) and maturely glycosylated (4.9 fold) ß-ENaC and cleaved γ-ENaC (4.7 fold). There were no significant changes for other apical sodium transporters. To investigate the role of increases in Na(+) entry and presumably [Na(+)](i) on ENaC, animals were infused with amiloride prior to and during sodium loading. Blocking Na(+) entry did not inhibit the effect of resalting on I(Na). However, amiloride did prevent decreases in ENaC expression, an effect that was not mimicked by hydrochlorothiazide administration. Na(+) entry and presumably [Na(+)](i) can regulate ENaC expression but does not fully account for the aldosterone-independent decrease in I(Na) during an acute sodium load.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Sódio/farmacologia , Aldosterona/administração & dosagem , Amilorida/farmacologia , Animais , Diuréticos/farmacologia , Canais Epiteliais de Sódio/genética , Feminino , Regulação da Expressão Gênica , Ratos , Ratos Sprague-Dawley , Sódio/administração & dosagem , Organismos Livres de Patógenos Específicos , Água/química , Água/metabolismo , Equilíbrio Hidroeletrolítico
17.
Am J Physiol Renal Physiol ; 305(2): F208-15, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23678039

RESUMO

We tested the hypothesis that low luminal K⁺ inhibits the activity of ROMK channels in the rat cortical collecting duct. Whole-cell voltage-clamp measurements of the component of outward K⁺ current inhibited by the bee toxin Tertiapin-Q (ISK) showed that reducing the bath concentration ([K⁺]o) to 1 mM resulted in a decline of current over 2 min compared with that observed at 10 mM [K⁺]o. However, maintaining tubules in 1 mM [K⁺]o without establishing whole-cell clamp conditions did not affect ISK. The [K⁺]o-dependent decline was not prevented by increasing cytoplasmic-side pH or by inhibition of phosphatase activity. It was, however, abolished by the inclusion of 0.5 mM DTT in the pipette solution to prevent oxidation of the intracellular environment. Conversely, treatment of intact tubules with the oxidant H2O2 (100 µM) decreased ISK in a [K⁺]o-dependent manner. Treatment of the tubules with the phospholipase C inhibitor U73122 prevented the effect of low [K⁺]o, suggesting the involvement of this enzyme in the process. We examined these effects further using Xenopus oocytes expressing ROMK2 channels. A 50-min exposure to the permeant oxidizing agent tert-butyl hydroperoxide (t-BHP; 500 µM) did not affect outward K⁺ currents with [K⁺]o = 10 mM but reduced currents by 50% with [K⁺]o = 1 mM and by 75% with [K⁺]o = 0.1 mM. Pretreatment of the oocytes with U73122 prevented the effects of t-BHP. Under conditions of low dietary K intake, K⁺ secretion by distal nephron segments may be suppressed by a combination of low luminal [K⁺]o and oxidative stress.


Assuntos
Estresse Oxidativo/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/fisiologia , Animais , Feminino , Técnicas In Vitro , Túbulos Renais Coletores/metabolismo , Masculino , Técnicas de Patch-Clamp , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Xenopus
18.
Glob Heart ; 18(1): 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817226

RESUMO

Background: Hypertension (HTN) is the leading cardiovascular disease (CVD) risk factor in Haiti and is likely driven by poverty-related social and dietary factors. Salt consumption in Haiti is hypothesized to be high but has never been rigorously quantified. Methods: We used spot urine samples from a subset of participants in the population-based Haiti Cardiovascular Disease Cohort to estimate population mean daily sodium intake. We compared three previously validated formulas for estimating dietary sodium intake using urine sodium, urine creatinine, age, sex, height, and weight. We explored the association between dietary sodium intake and blood pressure, stratified by age group. Results: A total of 1,240 participants had spot urine samples. Median age was 38 years (range 18-93), and 48% were female. The mean dietary sodium intake was 3.5-5.0 g/day across the three estimation methods, with 94.2%-97.9% of participants consuming above the World Health Organization (WHO) recommended maximum of 2 g/day of sodium. Among young adults aged 18-29, increasing salt intake from the lowest quartile of consumption (<3.73 g/day) to the highest quartile (>5.88 g/day) was associated with a mean 8.71 mmHg higher systolic blood pressure (SBP) (95% confidence interval: 3.35, 14.07; p = 0.001). An association was not seen in older age groups. Among participants under age 40, those with SBP ≥120 mmHg consumed 0.5 g/day more sodium than those with SBP <120 mmHg (95% confidence interval: 0.08, 0.69; p = 0.012). Conclusions: Nine out of 10 Haitian adults in our study population consumed more than the WHO recommended maximum for daily sodium intake. In young adults, higher sodium consumption was associated with higher SBP. This represents an inflection point for increased HTN risk early in the life course and points to dietary salt intake as a potential modifiable risk factor for primordial and primary CVD prevention in young adults.


Assuntos
Doenças Cardiovasculares , Hipertensão , Sódio na Dieta , Humanos , Feminino , Adulto Jovem , Idoso , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Cloreto de Sódio na Dieta , Haiti , Pressão Sanguínea , Doenças Cardiovasculares/complicações , Hipertensão/epidemiologia , Sódio/urina
19.
Biophys J ; 102(12): 2742-50, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22735524

RESUMO

Three residues (E132, F127, and R128) at the outer mouth of Kir1.1b directly affected inward rectifier gating by external K, independent of pH gating. Each of the individual mutations E132Q, F127V, F127D, and R128Y changed the normal K dependence of macroscopic conductance from hyperbolic (Km = 6 ± 2 mM) to linear, up to 500 mM, without changing the hyperbolic K dependence of single-channel conductance. This suggests that E132, F127, and R128 are responsible for maximal Kir1.1b activation by external K. In addition, these same residues were also essential for recovery of Kir1.1b activity after complete removal of external K by 18-Crown-6 polyether. In contrast, charge-altering mutations at neighboring residues (E92A, E104A, D97V, or Q133E) near the outer mouth of the channel did not affect Kir1.1b recovery after chelation of external K. The collective role of E132, R128, and F127 in preventing Kir1.1b inactivation by either cytoplasmic acidification or external K removal implies that pH inactivation and the external K sensor share a common mechanism, whereby E132, R128, and F127 stabilize the Kir1.1b selectivity filter gate in an open conformation, allowing rapid recovery of channel activity after a period of external K depletion.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Probabilidade , Conformação Proteica
20.
Am J Physiol Renal Physiol ; 302(1): F20-6, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22012806

RESUMO

Epithelial Na+ channels (ENaC) can be regulated by both mineralocorticoid and glucocorticoid hormones. In the mammalian kidney, effects of mineralocorticoids have been extensively studied, but those of glucocorticoids are complicated by metabolism of the hormones and cross-occupancy of mineralocorticoid receptors. Here, we report effects of dexamethasone, a synthetic glucocorticoid, on ENaC in the rat kidney. Infusion of dexamethasone (24 µg/day) for 1 wk increased the abundance of αENaC 2.26 ± 0.04-fold. This was not accompanied by an induction of Na+ currents (I(Na)) measured in isolated split-open collecting ducts. In addition, hormone treatment did not increase the abundance of the cleaved forms of either αENaC or γENaC or the expression of ßENaC or γENaC protein at the cell surface. The absence of hypokalemia also indicated the lack of ENaC activation in vivo. Dexamethasone increased the abundance of the Na+ transporters Na+/H+ exchanger 3 (NHE3; 1.36 ± 0.07-fold), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2; 1.49 ± 0.07-fold), and Na-Cl cotransporter (NCC; 1.72 ± 0.08-fold). Surface expression of NHE3 and NCC also increased with dexamethasone treatment. To examine whether glucocorticoids could either augment or inhibit the effects of mineralocorticoids, we infused dexamethasone (60 µg/day) together with aldosterone (12 µg/day). Dexamethasone further increased the abundance of αENaC in the presence of aldosterone, suggesting independent effects of the two hormones on this subunit. However, I(Na) was similar in animals treated with dexamethasone+aldosterone and with aldosterone alone. We conclude that dexamethasone can occupy glucocorticoid receptors in cortical collecting duct and induce the synthesis of αENaC. However, this induction is not sufficient to produce an increase in functional Na+ channels in the apical membrane, implying that the abundance of αENaC is not rate limiting for channel formation in the kidney.


Assuntos
Aldosterona/farmacologia , Dexametasona/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Glucocorticoides/fisiologia , Mineralocorticoides/fisiologia , Animais , Canais Epiteliais de Sódio/biossíntese , Canais Epiteliais de Sódio/fisiologia , Subunidades Proteicas/biossíntese , Ratos , Simportadores de Cloreto de Sódio/efeitos dos fármacos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa