Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Phys ; 20(7): 1180-1193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036650

RESUMO

The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.

2.
Front Immunol ; 14: 1180233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359535

RESUMO

Introduction: MicroRNAs are small non-coding RNAs and represent key players in physiology and disease. Aberrant microRNA expression is central to the development and progression of cancer, with various microRNAs proposed as potential cancer biomarkers and drug targets. There is a need to better understand dynamic microRNA expression changes as cancers progress and their tumor microenvironments evolve. Therefore, spatiotemporal and non-invasive in vivo microRNA quantification in tumor models would be highly beneficial. Methods: We developed an in vivo microRNA detector platform in which the obtained signals are positively correlated to microRNA presence, and which permitted stable expression in cancer cells as needed for long-term experimentation in tumor biology. It exploits a radionuclide-fluorescence dual-reporter for quantitative in vivo imaging of a microRNA of choice by radionuclide tomography and fluorescence-based downstream ex vivo tissue analyses. We generated and characterized breast cancer cells stably expressing various microRNA detectors and validated them in vitro. Results: We found the microRNA detector platform to report on microRNA presence in cells specifically and accurately, which was independently confirmed by real-time PCR and through microRNA modulation. Moreover, we established various breast tumor models in animals with different levels of residual immune systems and observed microRNA detector read-outs by imaging. Applying the detector platform to the progression of a triple-negative breast cancer model, we found that miR-155 upregulation in corresponding tumors was dependent on macrophage presence in tumors, revealing immune-mediated phenotypic changes in these tumors as they progressed. Conclusion: While applied to immunooncology in this work, this multimodal in vivo microRNA detector platform will be useful whenever non-invasive quantification of spatiotemporal microRNA changes in living animals is of interest.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , MicroRNAs/genética , Regulação para Cima , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
3.
Sci Signal ; 13(652)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023985

RESUMO

Tumor-associated macrophages (TAMs) can exist in pro- and anti-inflammatory states. Anti-inflammatory TAMs (also referred to as M2-polarized) generally suppress antitumor immune responses and enhance the metastatic progression of cancer. To explore the mechanisms behind this phenomenon, we isolated macrophages from mice and humans, polarized them ex vivo, and examined their functional interaction with breast cancer cells in culture and in mice. We found that anti-inflammatory TAMs promoted a metabolic state in breast cancer cells that supported various protumorigenic phenotypes. Anti-inflammatory TAMs secreted the cytokine TGF-ß that, upon engagement of its receptors in breast cancer cells, suppressed the abundance of the transcription factor STAT1 and, consequently, decreased that of the metabolic enzyme succinate dehydrogenase (SDH) in the tumor cells. The decrease in SDH levels in tumor cells resulted in an accumulation of succinate, which enhanced the stability of the transcription factor HIF1α and reprogrammed cell metabolism to a glycolytic state. TAM depletion-repletion experiments in a 4T1 mouse model additionally revealed that anti-inflammatory macrophages promoted HIF-associated vascularization and expression of the immunosuppressive protein PD-L1 in tumors. The findings suggest that anti-inflammatory TAMs promote tumor-associated angiogenesis and immunosuppression by altering metabolism in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Interferência de RNA , Transdução de Sinais , Succinato Desidrogenase/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Nat Phys ; 15(9): 973-981, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37484710

RESUMO

The translocation of mechanosensitive transcription factors (TFs) across the nuclear envelope is a crucial step in cellular mechanotransduction. Yet the molecular mechanisms by which external mechanical cues control the nuclear shuttling dynamics of TFs through the nuclear pore complex (NPC) to activate gene expression are poorly understood. Here, we show that the nuclear import rate of myocardin-related transcription factor A (MRTFA) - a protein that regulates cytoskeletal dynamics via the activation of the TF serum response factor (SRF) - inversely correlates with the protein's nanomechanical stability and does not relate to its thermodynamic stability. Tagging MRTFA with mechanically resistant proteins results in the downregulation of SRF-mediated myosin light-chain 9 (MYL9) gene expression and subsequent slowing down of cell migration. We conclude that the mechanical unfolding of proteins regulates their nuclear translocation rate through the NPC, and highlight the role of the NPC as a selective mechanosensor able to discriminate forces as low as ~10 pN. The modulation of the mechanical stability of TFs may represent a new strategy for the control of gene expression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa