Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Med Chem ; 182: 111617, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442684

RESUMO

A number of compounds targeting different processes of the Human Immunodeficiency Virus type 1 (HIV-1) life cycle have been developed in the continuing fight against AIDS. Coumarin-based molecules already proved to act as HIV-1 Protease (PR) or Integrase (IN) inhibitors and also to target HIV-1 reverse transcriptase (RT), blocking the DNA-dependent DNA-polymerase activity or the RNA-dependent DNA-polymerase activity working as common NNRTIs. In the present study, with the aim to exploit a coumarin-based scaffold to achieve the inhibition of multiple viral coded enzymatic functions, novel 4-hydroxy-2H, 5H-pyrano (3, 2-c) chromene-2, 5-dione derivatives were synthesized. The modeling studies calculated the theoretical binding affinity of the synthesized compounds on both HIV-1 IN and RT-associated Ribonuclease H (RNase H) active sites, which was confirmed by biological assays. Our results provide a basis for the identification of dual HIV-1 IN and RT RNase H inhibitors compounds.


Assuntos
Fármacos Anti-HIV/farmacologia , Cumarínicos/farmacologia , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo , Relação Estrutura-Atividade
2.
PLoS Biol ; 3(10): e337, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16207075

RESUMO

The formation of a multi-nucleate myofibre is directed, in Drosophila, by a founder cell. In the embryo, founders are selected by Notch-mediated lateral inhibition, while during adult myogenesis this mechanism of selection does not appear to operate. We show, in the muscles of the adult abdomen, that the Fibroblast growth factor pathway mediates founder cell choice in a novel manner. We suggest that the developmental patterns of Heartbroken/Dof and Sprouty result in defining the domain and timing of activation of the Fibroblast growth factor receptor Heartless in specific myoblasts, thereby converting them into founder cells. Our results point to a way in which muscle differentiation could be initiated and define a critical developmental function for Heartbroken/Dof in myogenesis.


Assuntos
Proteínas de Drosophila/fisiologia , Desenvolvimento Muscular , Proteínas Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Padronização Corporal , Linhagem da Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/citologia , Pupa/metabolismo
3.
Cancer Transl Med ; 3(3): 69-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28825042

RESUMO

A multifunctional fusion protein, IL-13.E13K-D2-NLS, effectively recognizes glioblastoma (GBM) cells and delivers its portion to the cell nucleus. IL-13.E13K-D2-NLS is composed of a cancer cell targeting ligand (IL-13.E13K), specialized cytosol translocation bacterial toxin domain 2 of Pseudomonas exotoxin A (D2) and SV40 T antigen nuclear localization signal (NLS). We have now tested whether we can produce proteins that would serve as a delivery vehicle to lysosomes and mitochondria as well. Moreover, we examined whether IL-13.E13K-D2-NLS can deliver anti-cancer drugs like doxorubicin to their nuclear site of action in cancer cells. We have thus constructed two novel proteins: IL-13.E13K-D2-LLS which incorporates lysosomal localization signal (LLS) of a human lysosomal associated membrane protein (LAMP-1) for targeting to lysosomes and IL-13-D2-KK2, which incorporates a pro-apoptotic peptide (KLAKLAK)2 (KK2) exerting its action in mitochondria. Furthermore, we have produced IL-13.E13K-D2-NLS and IL-13.E13K-D2-LLS versions containing a cysteine for site-specific conjugation with a modified doxorubicin, WP936. We found that single-chain recombinant proteins IL-13.E13K-D2-LLS and IL-13-D2-KK2 are internalized and localized mostly to the lysosomal and mitochondrial compartments, respectively, without major trafficking to cells' nuclei. We also determined that IL-13.E13K-D2-NLS-cys[WP936], IL-13.E13K-D2-LAMP-cys[WP936] and IL-13-D2-KK2 were cytotoxic to GBM cells overexpressing IL-13RA2, while much less cytotoxic to GBM cell lines expressing low levels of the receptor. IL-13.E13K-D2-NLS-cys[WP936] was the most potent of the tested anti-tumor agents including free WP936. We believe that our receptor-directed intracellular organelle-targeted proteins can be employed for numerous specific and safer treatment applications when drugs have specific intracellular sites of their action.

4.
Nat Neurosci ; 20(5): 753-759, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28253233

RESUMO

Microglia are resident inflammatory cells of the CNS and have important roles in development, homeostasis and a variety of neurologic and psychiatric diseases. Difficulties in procuring human microglia have limited their study and hampered the clinical translation of microglia-based treatments shown to be effective in animal disease models. Here we report the differentiation of human induced pluripotent stem cells (iPSC) into microglia-like cells by exposure to defined factors and co-culture with astrocytes. These iPSC-derived microglia have the phenotype, gene expression profile and functional properties of brain-isolated microglia. Murine iPSC-derived microglia generated using a similar protocol have equivalent efficacy to primary brain-isolated microglia in treatment of murine syngeneic intracranial malignant gliomas. The ability to generate human microglia facilitates the further study of this important CNS cell type and raises the possibility of their use in personalized medicine applications.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microglia/metabolismo , Microglia/fisiologia , Animais , Astrócitos/citologia , Movimento Celular , Técnicas de Cocultura , Citocinas/metabolismo , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Glioma/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Microglia/transplante , Fagocitose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Australas Med J ; 6(6): 321-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23837079

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. Hepatitis B & C accounts for most HCC occurrences. It is very rare to see a tumour thrombus extending into the right atrium of the heart as a result of the invasion of HCC. This complication has a very poor prognosis as mean survival time is about three to four months. We encountered such a rare case of hepatocellular carcinoma having extensive tumour thrombus extending into the right atrium without any cardio respiratory distress or clinical finding suggestive of cardiovascular involvement.

6.
BioDrugs ; 26(4): 235-44, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22671766

RESUMO

A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Portadores de Fármacos/química , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Subunidade alfa2 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Ligantes , Peptídeos/química , Engenharia de Proteínas , Radioisótopos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
7.
Australas Med J ; 5(4): 213-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848312

RESUMO

Myotonic dystrophy is also known as dystrophia myotonica (DM). The condition is composed of at least two clinical disorders with overlapping phenotypes and distinct molecular genetic defects: myotonic dystrophy type 1, the classic disease originally described by Steinert, and myotonic dystrophy type 2, also called proximal myotonic myopathy (PROMM). Mega cisterna magna is thought to be an anatomic variant with no clinical significance. We report a rare case of type 1 dystrophia myotonica in combination with mega cisterna magna.

8.
Neuro Oncol ; 14(1): 6-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21946118

RESUMO

Interleukin 13 receptor α 2 (IL-13Rα2) is a glioblastoma multiforme (GBM)-associated plasma membrane receptor, a brain tumor of dismal prognosis. Here, we isolated peptide ligands for IL-13Rα2 with use of a cyclic disulphide-constrained heptapeptide phages display library and 2 in vitro biopanning schemes with GBM cells that do (G26-H2 and SnB19-pcDNA cells) or do not (G26-V2 and SnB19-asIL-13Rα2 cells) over-express IL-13Rα2. We identified 3 peptide phages that bind to IL-13Rα2 in cellular and protein assays. One of the 3 peptide phages, termed Pep-1, bound to IL-13Rα2 with the highest specificity, surprisingly, also in a reducing environment. Pep-1 was thus synthesized and further analyzed in both linear and disulphide-constrained forms. The linear peptide bound to IL-13Rα2 more avidly than did the disulphide-constrained form and was efficiently internalized by IL-13Rα2-expressing GBM cells. The native ligand, IL-13, did not compete for the Pep-1 binding to the receptor and vice versa in any of the assays, indicating that the peptide might be binding to a site on the receptor different from the native ligand. Furthermore, we demonstrated by noninvasive near infrared fluorescence imaging in nude mice that Pep-1 binds and homes to both subcutaneous and orthotopic human GBM xenografts expressing IL-13Rα2 when injected by an intravenous route. Thus, we identified a linear heptapeptide specific for the IL-13Rα2 that is capable of crossing the blood-brain tumor barrier and homing to tumors. Pep-1 can be further developed for various applications in cancer and/or inflammatory diseases.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Biblioteca de Peptídeos , Peptídeos/farmacocinética , Animais , Ligação Competitiva , Feminino , Humanos , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genes Cancer ; 1(5): 421-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20740056

RESUMO

We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa