Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 14(4): e12350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573314

RESUMO

BACKGROUND: Allergic diseases typically refer to a heterogeneous group of conditions primarily caused by the activation of mast cells or eosinophils, including atopic dermatitis (AD), allergic rhinitis (AR), and asthma. Asthma, AR, and AD collectively affect approximately one-fifth of the global population, imposing a significant economic burden on society. Despite the availability of drugs to treat allergic diseases, they have been shown to be insufficient in controlling relapses and halting disease progression. Therefore, new drug targets are needed to prevent the onset of allergic diseases. METHOD: We employed a Mendelian randomization approach to identify potential drug targets for the treatment of allergic diseases. Leveraging 1798 genetic instruments for 1537 plasma proteins from the latest reported Genome-Wide Association Studies (GWAS), we analyzed the GWAS summary statistics of Ferreira MA et al. (nCase = 180,129, nControl = 180,709) using the Mendelian randomization method. Furthermore, we validated our findings in the GWAS data from the FinnGen and UK Biobank cohorts. Subsequently, we conducted sensitivity tests through reverse causal analysis, Bayesian colocalization analysis, and phenotype scanning. Additionally, we performed protein-protein interaction analysis to determine the interaction between causal proteins. Finally, based on the potential protein targets, we conducted molecular docking to identify potential drugs for the treatment of allergic diseases. RESULTS: At Bonferroni significance (p < 3.25 × 10-5), the Mendelian randomization analysis revealed 11 significantly associated protein-allergic disease pairs. Among these, the increased levels of TNFAIP3, ERBB3, TLR1, and IL1RL2 proteins were associated with a reduced risk of allergic diseases, with corresponding odds ratios of 0.82 (0.76-0.88), 0.74 (0.66-0.82), 0.49 (0.45-0.55), and 0.81 (0.75-0.87), respectively. Conversely, increased levels of IL6R, IL1R1, ITPKA, IL1RL1, KYNU, LAYN, and LRP11 proteins were linked to an elevated risk of allergic diseases, with corresponding odds ratios of 1.04 (1.03-1.05), 1.25 (1.18-1.34), 1.48 (1.25-1.75), 1.14 (1.11-1.18), 1.09 (1.05-1.12), 1.96 (1.56-2.47), and 1.05 (1.03-1.07), respectively. Bayesian colocalization analysis suggested that LAYN (coloc.abf-PPH4 = 0.819) and TNFAIP3 (coloc.abf-PPH4 = 0.930) share the same variant associated with allergic diseases. CONCLUSIONS: Our study demonstrates a causal association between the expression levels of TNFAIP3 and LAYN and the risk of allergic diseases, suggesting them as potential drug targets for these conditions, warranting further clinical investigation.

2.
Heliyon ; 10(9): e30746, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765128

RESUMO

Background: As the second most common gynecological cancer, cervical cancer (CC) seriously threatens women's health. The poor prognosis of CC is closely related to the post-infection microenvironment (PIM). This study investigated how lipid metabolism-related genes (LMRGs) affect CC PIM and their role in diagnosing CC. Methods: We analyzed lipid metabolism scores in the CC single-cell landscape by AUCell. The differentiation trajectory of epithelial cells to cancer cells was revealed using LMRGs and Monocle2. Consensus clustering was used to identify novel subgroups using the LMRGs. Multiple immune assessment methods were used to evaluate the immune landscape of the subgroups. Prognostic genes were determined by the LASSO and multivariate Cox regression analysis. Finally, we perform molecular docking of prognostic genes to explore potential therapeutic agents. Results: We revealed the differentiation trajectory of epithelial cells to cancer cells in CC by LMRGs. The higher LMRGs expression cluster had higher survival rates and immune infiltration expression. Functional enrichment showed that two clusters were mainly involved in immune response regulation. A novel LMR signature (LMR.sig) was constructed to predict clinical outcomes in CC. The expression of prognostic genes was correlated with the PIM immune landscape. Small molecular compounds with the best binding effect to prognostic genes were obtained by molecular docking, which may be used as new targeted therapeutic drugs. Conclusion: We found that the subtype with better prognosis could regulate the expression of some critical genes through more frequent lipid metabolic reprogramming, thus affecting the maturation and migration of dendritic cells (DCs) and the expression of M1 macrophages, reshaping the immunosuppressive environment of PIM in CC patients. LMRGs are closely related to the PIM immune landscape and can accurately predict tumor prognosis. These results further our understanding of the underlying mechanisms of LMRGs in CC.

3.
JAMA Ophthalmol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023885

RESUMO

Importance: Although augmenting large language models (LLMs) with knowledge bases may improve medical domain-specific performance, practical methods are needed for local implementation of LLMs that address privacy concerns and enhance accessibility for health care professionals. Objective: To develop an accurate, cost-effective local implementation of an LLM to mitigate privacy concerns and support their practical deployment in health care settings. Design, Setting, and Participants: ChatZOC (Sun Yat-Sen University Zhongshan Ophthalmology Center), a retrieval-augmented LLM framework, was developed by enhancing a baseline LLM with a comprehensive ophthalmic dataset and evaluation framework (CODE), which includes over 30 000 pieces of ophthalmic knowledge. This LLM was benchmarked against 10 representative LLMs, including GPT-4 and GPT-3.5 Turbo (OpenAI), across 300 clinical questions in ophthalmology. The evaluation, involving a panel of medical experts and biomedical researchers, focused on accuracy, utility, and safety. A double-masked approach was used to try to minimize bias assessment across all models. The study used a comprehensive knowledge base derived from ophthalmic clinical practice, without directly involving clinical patients. Exposures: LLM response to clinical questions. Main Outcomes and Measures: Accuracy, utility, and safety of LLMs in responding to clinical questions. Results: The baseline model achieved a human ranking score of 0.48. The retrieval-augmented LLM had a score of 0.60, a difference of 0.12 (95% CI, 0.02-0.22; P = .02) from baseline and not different from GPT-4 with a score of 0.61 (difference = 0.01; 95% CI, -0.11 to 0.13; P = .89). For scientific consensus, the retrieval-augmented LLM was 84.0% compared with the baseline model of 46.5% (difference = 37.5%; 95% CI, 29.0%-46.0%; P < .001) and not different from GPT-4 with a value of 79.2% (difference = 4.8%; 95% CI, -0.3% to 10.0%; P = .06). Conclusions and Relevance: Results of this quality improvement study suggest that the integration of high-quality knowledge bases improved the LLM's performance in medical domains. This study highlights the transformative potential of augmented LLMs in clinical practice by providing reliable, safe, and practical clinical information. Further research is needed to explore the broader application of such frameworks in the real world.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa