Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(7): e0046322, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35766508

RESUMO

The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 µM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Benzimidazóis , Febre de Chikungunya/tratamento farmacológico , Humanos , Isatina/análogos & derivados , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/metabolismo , Replicação Viral
2.
Antimicrob Agents Chemother ; 66(1): e0148921, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748384

RESUMO

Chikungunya virus (CHIKV) has reemerged as a global public health threat. The inflammatory pathways of the renin-angiotensin system (RAS) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) are usually involved in viral infections. Thus, telmisartan (TM), which is known to block the angiotensin 1 (AT1) receptor and activate PPAR-γ, was investigated for activity against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero cells, RAW 264.7 cells, and human peripheral blood mononuclear cells [hPBMCs]) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (50% inhibitory concentration (IC50) of 15.34 to 20.89 µM in the Vero cells and RAW 264.7 cells, respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of the CHIKV life cycle with efficacy during pretreatment and posttreatment. Moreover, the agonist of the AT1 receptor and an antagonist of PPAR-γ increased CHIKV infection, suggesting that the antiviral potential of TM occurs through modulating host factors. In addition, reduced activation of all major mitogen-activated protein kinases (MAPKs), NF-κB (p65), and cytokines by TM occurred through the inflammatory axis and supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at a human equivalent dose, TM abrogated CHIKV infection and inflammation significantly, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC-derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in the future for repurposing against CHIKV.


Assuntos
Febre de Chikungunya , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , PPAR gama , Receptor Tipo 1 de Angiotensina , Animais , Febre de Chikungunya/tratamento farmacológico , Chlorocebus aethiops , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Telmisartan/farmacologia , Células Vero
3.
Lancet Reg Health Southeast Asia ; 19: 100269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076718

RESUMO

Background: Chikungunya disease (CHIKD) is a threat to global health, as it impairs the quality of life of an infected individual ranging from months to years. A systematic evaluation of the serological, virological, and immunological aspects of the circulating viruses and their impact on the host response is imperative for better understanding of the evolving disease dynamics. Methods: Serum samples were collected from 196 acute CHIKD patients from ten tertiary care hospitals across India during 2016-2021. Out of 196 patients, paired convalescent samples were collected from 51 patients (one-month post-onset of symptoms). The serum samples were profiled for cytokines and neutralisation capacity. Further, chikungunya virus (CHIKV) was isolated from the acute sera and the replication kinetics of the clinical isolates was evaluated. Findings: Serological analysis indicated that neutralisation could be correlated to seroconversion in the convalescent phase but not found significant in acute phase. In the acute phase samples, there was a correlation between elevated serum levels of IFN-γ, IP-10, MCP-1 and MIG and disease severity. During convalescent phase, pro-inflammatory markers such as IL-6, IL-1ß, IL-9 and IP-10 were found to be elevated with a corresponding decline in the secretion of anti-inflammatory cytokines such as IL-4 and IL-10, which correlated with persistent arthralgia. Analysis of replication of the clinical isolates revealed that 68.4% of viruses were fast-growing in the Vero cells (cytopathic effect [CPE] observed within 24 h post-infection), and their corresponding acute serum samples showed an elevated secretion of IFN-α, IL-1RA, IL-17F, IL-9, MCP-1 and MIP-1α. Interpretation: This study provides an important overview of neutralisation capabilities and cytokine responses along with virus pathogenesis associated with CHIKV infections in India. Funding: Biotechnology Industry Research Assistance Council (BIRAC).

4.
Front Cell Infect Microbiol ; 11: 725035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993157

RESUMO

Purpose: The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively. In addition, whole-genome sequencing of viral strains and mutational analysis were carried out. Results: Analysis of the biochemical parameters highlighted the increased levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT, and ferritin in symptomatic patients. Symptomatic patients were mostly with one or more comorbidities, especially type 2 diabetes (66.6%). The virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. On the other hand, viral load was higher in plasma and serum samples of symptomatic patients, and they develop sufficient amounts of antibodies (IgG, IgM, and IgA). The levels of seven cytokines (IL-6, IL-1α, IP-10, IL-8, IL-10, IFN-α2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO, and MDC) were remarkably higher in asymptomatic patients. The whole-genome sequence analysis revealed that the current isolates were clustered with 19B, 20A, and 20B clades; however, 11 additional changes in Orf1ab, spike, Orf3a, Orf8, and nucleocapsid proteins were acquired. The D614G mutation in spike protein is linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load, and among them, two patients with this mutation passed away. Conclusions: This is the first comprehensive study of SARS-CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and thereby advance the implementation of effective disease control strategies.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Genômica , Humanos , Pandemias , SARS-CoV-2
5.
Nat Prod Res ; 29(22): 2112-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25490920

RESUMO

Three species of the genus Homalium - e.g. Homalium nepalense, Homalium tomentosum and Homalium zeylanicum (Flacourtiaceae) - are recorded in India which are confined to the Eastern Ghat hill ranges. While H. zeylanicum is the IUCN red-listed medium-sized tree, the other two are endangered species of medicinal significance. The antioxidant potential of leaf and bark of the plants was evaluated through successive extraction methods by using hexane, chloroform, ethyl acetate and methanol. The extracts were subjected to in vitro assays as DPPH, hydroxyl, nitric oxide and superoxide along with its biochemical estimation. Amongst all, the ethyl acetate extracts of bark is found to be most potent compared with that of the leaves. H. nepalense has the highest amount of total phenolic and flavonoid contents followed by H. tomentosum and H. zeylanicum, respectively, and significant antioxidant behaviour.


Assuntos
Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Plantas Medicinais/química , Salicaceae/química , Espécies em Perigo de Extinção , Flavonoides/química , Flavonoides/isolamento & purificação , Sequestradores de Radicais Livres/isolamento & purificação , Índia , Fenóis/química , Fenóis/isolamento & purificação , Casca de Planta/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa