Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536334

RESUMO

Macrophages are intimately involved in the pathophysiology of endometriosis, a chronic inflammatory disorder characterized by the growth of endometrial-like tissue (lesions) outside the uterus. By combining genetic and pharmacological monocyte and macrophage depletion strategies we determined the ontogeny and function of macrophages in a mouse model of induced endometriosis. We demonstrate that lesion-resident macrophages are derived from eutopic endometrial tissue, infiltrating large peritoneal macrophages (LpM) and monocytes. Furthermore, we found endometriosis to trigger continuous recruitment of monocytes and expansion of CCR2+ LpM. Depletion of eutopic endometrial macrophages results in smaller endometriosis lesions, whereas constitutive inhibition of monocyte recruitment significantly reduces peritoneal macrophage populations and increases the number of lesions. Reprogramming the ontogeny of peritoneal macrophages such that embryo-derived LpM are replaced by monocyte-derived LpM decreases the number of lesions that develop. We propose a putative model whereby endometrial macrophages are "proendometriosis" while newly recruited monocyte-derived macrophages, possibly in LpM form, are "antiendometriosis." These observations highlight the importance of monocyte-derived macrophages in limiting disease progression.


Assuntos
Endometriose/patologia , Macrófagos Peritoneais/patologia , Animais , Anticorpos Monoclonais/metabolismo , Quimiocina CCL2/deficiência , Quimiocina CCL2/metabolismo , Endométrio/patologia , Feminino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/patologia , Cavidade Peritoneal/patologia
2.
Mol Genet Metab ; 119(3): 249-257, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27692945

RESUMO

Severe, progressive skeletal dysplasia is a major symptom of multiple mucopolysaccharidoses (MPS) types. While a gene therapy approach initiated at birth has been shown to prevent the development of bone pathology in different animal models of MPS, the capacity to correct developed bone disease is unknown. In this study, ex vivo micro-computed tomography was used to demonstrate that bone mass and architecture of murine MPS VII L5 vertebrae were within the normal range at 1month of age but by 2months of age were significantly different to normal. The difference between normal and MPS VII BV/TV increased with age reaching a maximal difference at approximately 4months of age. In mature MPS VII bone BV/TV is increased (51.5% versus 21.5% in normal mice) due to an increase in trabecular number (6.2permm versus 3.8permm in normal mice). The total number of osteoclasts in the metaphysis of MPS VII mice was decreased, as was the percentage of osteoclasts attached to bone. MPS VII osteoblasts produced significantly more osteoprotegerin (OPG) than normal osteoblasts and supported the production of fewer osteoclasts from spleen precursor cells than normal osteoblasts in a co-culture system. In contrast, the formation of osteoclasts from MPS VII spleen monocytes was similar to normal in vitro, when exogenous RANKL and m-CSF was added to the culture medium. Administration of murine ß-glucuronidase to MPS VII mice at 4months of age, when bone disease was fully manifested, using lentiviral gene delivery resulted in a doubling of osteoclast numbers and a significant increase in attachment capacity (68% versus 29.4% in untreated MPS VII animals). Bone mineral volume rapidly decreased by 39% after gene therapy and fell within the normal range by 6months of age. Collectively, these results indicate that lentiviral-mediated gene therapy is effective in reversing established skeletal pathology in murine MPS VII.


Assuntos
Densidade Óssea/genética , Terapia Genética , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Glucuronidase/administração & dosagem , Humanos , Lentivirus/genética , Camundongos , Mucopolissacaridose VII/diagnóstico por imagem , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia , Osteoprotegerina/genética , Microtomografia por Raio-X
3.
Dis Model Mech ; 14(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382636

RESUMO

Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.


Assuntos
Endometriose , Animais , Modelos Animais de Doenças , Endometriose/diagnóstico por imagem , Endometriose/patologia , Feminino , Antagonistas de Hormônios/farmacologia , Humanos , Camundongos
4.
Hum Reprod Update ; 24(4): 497-515, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697794

RESUMO

BACKGROUND: Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. OBJECTIVE AND RATIONALE: In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. SEARCH METHODS: Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. OUTCOMES: This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. WIDER IMPLICATIONS: There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.


Assuntos
Endometriose/genética , RNA não Traduzido/análise , Progressão da Doença , Endometriose/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/análise , MicroRNAs/genética , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Útero/metabolismo , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa