Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232462

RESUMO

Environmental effects and, particularly, temperature changes have been demonstrated to influence the activity, function, and well-being of teleosts. Temperature may change seasonally in the wild, and in captivity under aquaculture operations. Moreover, climate change is expected to shift temperature profiles worldwide. MicroRNAs (miRNA) are important temperature-sensitive gene-expression regulators acting at the post-transcriptional level. They are known to be key regulators in development, reproduction, and immune responses. Therefore, early larval development of the European sea bass (Dicentrarchus labrax), one of the most extensively cultured species in Mediterranean aquaculture, was investigated at early rearing temperatures, i.e., 15, 17.5, and 20 °C, in regard to the impact of temperatures on miRNAs through sncRNA high-throughput sequencing but also at the phenotypic level in terms of growth, sex, vision, and skeletal deformities. Expression profiling revealed stage- and temperature-specific miRNA expression targeting genes with roles in reproduction and immune response mainly at the flexion and all-fins stages. Similar stage- and temperature-specific results were also observed concerning the number of rod cells and lower jaw elongation. The present work presents for the first time highly promising results on the influence of early rearing temperature at the post-transcriptional level during European sea bass development, with a putative impact on reproduction and immune response, as well as regarding teleost vision and larval development.


Assuntos
Bass , MicroRNAs , Pequeno RNA não Traduzido , Animais , Aquicultura , Bass/genética , Bass/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pequeno RNA não Traduzido/metabolismo , Temperatura
2.
Mar Drugs ; 20(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35049879

RESUMO

Chronic discharge of surplus organic matter is a typical side effect of fish aquaculture, occasionally leading to coastal eutrophication and excessive phytoplankton growth. Owing to their innate filter-feeding capacity, marine sponges could mitigate environmental impact under integrated multitrophic aquaculture (IMTA) scenarios. Herein, we investigated the clearance capacity of four ubiquitous Mediterranean sponges (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) against three microalgal substrates with different size/motility characteristics: the nanophytoplankton Nannochloropsis sp. (~3.2 µm, nonmotile) and Isochrysis sp. (~3.8 µm, motile), as well as the diatom Phaeodactylum tricornutum (~21.7 µm, nonmotile). In vitro cleaning experiments were conducted using sponge explants in 1 L of natural seawater and applying different microalgal cell concentrations under light/dark conditions. The investigated sponges exhibited a wide range of retention efficiencies for the different phytoplankton cells, with the lowest average values found for A. cannabina (37%) and the highest for A. oroides (70%). The latter could filter up to 14.1 mL seawater per hour and gram of sponge wet weight, by retaining 100% of Isochrysis at a density of 105 cells mL-1, under darkness. Our results highlight differences in filtering capacity among sponge species and preferences for microalgal substrates with distinct size and motility traits.


Assuntos
Microalgas , Poríferos , Animais , Aquicultura , Organismos Aquáticos , Mar Mediterrâneo , Água do Mar
3.
Fish Physiol Biochem ; 47(6): 1777-1792, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34515893

RESUMO

The histological process of gonadal differentiation, together with the endocrine changes of sex steroid hormones and some of their precursors, was studied in hatchery-produced greater amberjack Seriola dumerili from 101 until 408 days post-hatching (dph), with samplings conducted every 50 days. Histological processing showed that sex differentiation began at 101 dph with the formation of the ovarian cavity in females, while the presumptive males did not yet contain any germ cells in their gonad. At 150 dph, we observed the first germ cells in the developing testes. Sex differentiation in almost all sampled individuals was complete at 408 dph. No size dimorphism was observed between the sexes, and the sex ratio was 1:1, suggesting that there was no influence of early rearing in captivity on sex differentiation. Plasma concentrations of adrenosterone (Ad), androstenedione (Δ4), 11-ketotestosterone (11ΚΤ), testosterone (Τ), estradiol (Ε2), progesterone (P4) and 17,20ß-dihydroxy-4-pregnen-3-one (17,20ßP) were measured in males and females with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) to examine their role in the sex differentiation process. From the seven hormones, the only one that exhibited differences between the sexes was 11-KT and the plasma 11-KT concentration was found to be a useful indication of greater amberjack sex. Variations were observed in the mean values of Ad, Δ4, 11-KT, T, P4 and 17,20ßP over time in one or both sexes, indicating their involvement in the sex differentiation process.


Assuntos
Perciformes , Diferenciação Sexual , Animais , Aquicultura , Cromatografia Líquida , Feminino , Hormônios Esteroides Gonadais/sangue , Gônadas , Masculino , Espectrometria de Massas em Tandem
4.
J Therm Biol ; 78: 84-91, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509671

RESUMO

The effects of water temperature (15, 20 and 25 °C) on the stress response of European sea bass, Dicentrarchus labrax, were studied. Blood and water samples were collected prior and at 0.5, 1, 2, 4 and 8 h post-stress for hormonal and biochemical analysis. Water temperature affected the resting concentrations of all stress indicators examined, as well as their response after stress, apart from lactate which response was unaffected by temperature. Cortisol showed the response with the highest outcome at 15 °C, and the fastest at 25 °C. Cortisol release rate in the water was also faster and of higher magnitude at higher temperatures. Glucose had both the fastest and higher in magnitude response at 25 °C, while lactate responded similarly in all temperatures tested. Finally, osmolality changed only at the highest temperature. These results suggest that temperature should be taken into consideration when evaluating the resting levels of stress indicators of European sea bass in laboratory, rearing and field conditions. Additionally, the present results show that temperature affects the stress response, suggesting that fish can differ in their susceptibility to stress depending on the acclimatization temperature. Moreover, it was shown that cortisol release rate in the water, a non-invasive stress indicator, can depict the effects of temperature on cortisol stress response.


Assuntos
Aclimatação , Bass/fisiologia , Temperatura Alta , Estresse Psicológico/fisiopatologia , Animais , Ecossistema , Hidrocortisona/sangue
5.
BMC Genomics ; 15: 655, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25099474

RESUMO

BACKGROUND: Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. RESULTS: Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. CONCLUSIONS: We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Perfilação da Expressão Gênica , Dourada/genética , Caracteres Sexuais , Animais , Encéfalo/metabolismo , Feminino , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo
6.
ISME Commun ; 3(1): 36, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095196

RESUMO

Climate change is dramatically increasing the frequency and severity of marine heatwaves (MHWs) in the Mediterranean basin, strongly affecting marine food production systems. However, how it will shape the ecology of aquaculture systems, and the cascading effects on productivity, is still a major knowledge gap. The present work aims to increase our understanding of future impacts, caused by raising water temperatures, on the interaction between water and fish microbiotas, and consequential effects upon fish growth. Thus, the bacterial communities present in the water tanks, and mucosal tissues (skin, gills and gut), of greater amberjack farmed in recirculatory aquaculture systems (RAS), at three different temperatures (24, 29 and 33 °C), were characterized in a longitudinal study. The greater amberjack (Seriola dumerili) is a teleost species with high potential for EU aquaculture diversification due to its fast growth, excellent flesh quality and global market. We show that higher water temperatures disrupt the greater amberjack's microbiota. Our results demonstrate the causal mediation exerted by this bacterial community shifts on the reduction of fish growth. The abundance of members of the Pseudoalteromonas is positively correlated with fish performance, whereas members of the Psychrobacter, Chryseomicrobium, Paracoccus and Enterovibrio are suggested as biomarkers for dysbiosis, at higher water temperatures. Hence, opening new evidence-based avenues for the development of targeted microbiota-based biotechnological tools, designed to increase the resilience and adaptation to climate change of the Mediterranean aquaculture industry.

7.
PLoS One ; 17(8): e0272510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960751

RESUMO

European sea bass is a species of great commercial value for fisheries and aquaculture. Rising temperatures may jeopardize the performance and survival of the species across its distribution and farming range, making the investigation of its thermal responses highly relevant. In this article, the metabolic scope, performance, and tolerance of juvenile E. sea bass reared under three high water temperatures (24, 28, 33°C), for a period of three months was evaluated via analysis of selected growth performance and physiological indicators. Effects on molecular, hormonal, and biochemical variables were analyzed along with effects of acclimation temperature on the metabolic rate and Critical Thermal maximum (CTmax). Despite signs of thermal stress at 28°C indicated by high plasma cortisol and lactate levels as well as the upregulation of genes coding for Heat Shock Proteins (HSP), E. sea bass can maintain high performance at that temperature which is encouraging for the species culture in the context of a warming ocean. Critical survivability thresholds appear sharply close to 33°C, where the aerobic capacity declines and the overall performance diminishes. European sea bass demonstrates appreciable capacity to cope with acute thermal stress exhibiting CTmax as high as 40°C for fish acclimated at high temperatures, which may indicate resilience to future heatwaves events.


Assuntos
Bass , Aclimatação , Animais , Aquicultura , Bass/fisiologia , Temperatura Alta , Temperatura
8.
Microorganisms ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336202

RESUMO

Epitheliocystis is a fish gill disease caused by a broad range of intracellular bacteria infecting freshwater and marine fish worldwide. Here we report the occurrence and progression of epitheliocystis in greater amberjack reared in Crete (Greece). The disease appears to be caused mainly by a novel Betaproteobacteria belonging to the Candidatus Ichthyocystis genus with a second agent genetically similar to Ca. Parilichlamydia carangidicola coinfecting the gills in some cases. After a first detection of the disease in 2017, we investigated epitheliocystis in the following year's cohort of greater amberjack juveniles (cohort 2018) transferred from inland tanks to the same cage farm in the open sea where the first outbreak was detected. This cohort was monitored for over a year together with stocks of gilthead seabream and meagre co-farmed in the same area. Our observations showed that epitheliocystis could be detected in greater amberjack gills as early as a month following the transfer to sea cages, with ionocytes at the base of the gill lamellae being initially infected. Cyst formation appears to trigger a proliferative response, leading to the fusion of lamellae, impairment of gill functions and subsequently to mortality. Lesions are characterized by infiltration of immune cells, indicating activation of the innate immune response. At later stages of the outbreak, cysts were no longer found in ionocytes but were observed in mucocytes at the trailing edge of the filament. Whole cysts appeared finally to be expelled from infected mucocytes directly into the water, which might constitute a novel means of dispersion of the infectious agents. Molecular screening indicates that meagre is not affected by this disease and confirms the presence of previously described epitheliocystis agents, Ca. Ichthyocystis sparus, Ca. Ichthyocystis hellenicum and Ca. Similichlamydia spp., in gilthead seabream. Prevalence data show that the bacteria persist in both gilthead seabream and greater amberjack cohorts after first infection.

9.
Microorganisms ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429891

RESUMO

The target of this study was to use indigenous probiotic bacteria in the rearing of seabass larvae. A Phaeobacter sp. strain isolated from bonito yolk-sac larvae (Sarda sarda) and identified by amplification of 16S rDNA showed in vitro inhibition against Vibrio anguillarum. This Phaeobacter sp. strain was used in the rearing of seabass larvae (Dicentrarchus labrax L.) in a large-scale trial. The survival of seabass after 60 days of rearing and the specific growth rate at the late exponential growth phase were significantly higher in the treatment receiving probiotics (p < 0.05). Microbial community richness as determined by denaturing gradient gel electrophoresis (DGGE) showed an increase in bacterial diversity with fish development. Changes associated with the administration of probiotics were observed 11 and 18 days after hatching but were not apparent after probiotic administration stopped. In a small challenge experiment, seabass larvae from probiotic treatment showed increased survival (p < 0.05) after experimental infection with a mild pathogen (Vibrio harveyi). Overall, our results showed that the use of an indigenous probiotic strain had a beneficial impact on larval rearing in industry-like conditions.

10.
Pathogens ; 10(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578236

RESUMO

Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.

11.
Sci Rep ; 11(1): 8787, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888827

RESUMO

Temperatures experienced during early ontogeny significantly influence fish phenotypes, with clear consequences for the wild and reared stocks. We examined the effect of temperature (17, 20, or 23 °C) during the short embryonic and yolk-sac larval period, on the swimming performance and skeleton of metamorphosing Gilthead seabream larvae. In the following ontogenetic period, all fish were subjected to common temperature (20 °C). The critical swimming speed of metamorphosing larvae was significantly decreased from 9.7 ± 0.6 TL/s (total length per second) at 17 °C developmental temperature (DT) to 8.7 ± 0.6 and 8.8 ± 0.7 TL/s at 20 and 23 °C DT respectively (p < 0.05). Swimming performance was significantly correlated with fish body shape (p < 0.05). Compared with the rest groups, fish of 17 °C DT presented a slender body shape, longer caudal peduncle, terminal mouth and ventrally transposed pectoral fins. Moreover, DT significantly affected the relative depth of heart ventricle (VD/TL, p < 0.05), which was comparatively increased at 17 °C DT. Finally, the incidence of caudal-fin abnormalities significantly decreased (p < 0.05) with the increase of DT. To our knowledge, this is the first evidence for the significant effect of DT during the short embryonic and yolk-sac larval period on the swimming performance of the later stages.


Assuntos
Larva/fisiologia , Metamorfose Biológica , Dourada/fisiologia , Animais , Larva/crescimento & desenvolvimento , Dourada/crescimento & desenvolvimento , Esqueleto/crescimento & desenvolvimento , Esqueleto/fisiologia , Natação , Temperatura
12.
Foods ; 9(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075005

RESUMO

Processing of fish in aquaculture generates considerable amounts of by-products that remain underused and/or unexploited. We evaluated the nutritive content of fish by-products (head, gills, intestines, trimmings, bones, and skin) from meagre and gilthead sea bream fish species reared in Greece in order to estimate their nutritional value for future development of high added-value products. The proximate composition of the fish samples (total protein, total lipid, ash, moisture, and macro-element content) was determined using the Association of Official Analytical Chemists (AOAC) and International Organization for Standardization (ISO) official methods. The content of fatty acids was determined using capillary gas chromatography, and the protein profile was estimated employing scientific orbitrap mass spectrophotometer methodology. The nutrient composition of fish by-products presented fluctuations among the different by-products. Skin was the most significant protein source, trimmings and bones were high in calcium, and the head, intestines, and bones were a good source of lipids. The most abundant lipid acids found in by-products were oleic, palmitic, linoleic, and eicosenoic acids, whereas the most abundant proteins were adenosine triphosphate (ATP) synthase subunit epsilon, mitochondrial nicotinamide adenine dinucleotide (NADH) dehydrogenase, and mitochondrial cytochrome b-c1 complex subunit 8. These data suggest that by-products constitute valuable sources of nutrients and could therefore be exploited in accordance with the principles of a circular economy.

13.
Front Genet ; 10: 657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404269

RESUMO

During early animal ontogenesis, a plethora of small non-coding RNAs (sncRNAs) are greatly expressed and have been shown to be involved in several regulatory pathways vital to proper development. The rapid advancements in sequencing and computing methodologies in the last decade have paved the way for the production of sequencing data in a broad range of organisms, including teleost species. Consequently, this has led to the discovery of sncRNAs as well as the potentially novel roles of sncRNA in gene regulation. Among the several classes of sncRNAs, microRNAs (miRNAs) have, in particular, been shown to play a key role in development. The present work aims to identify the miRNAs that play important roles during early European sea bass (Dicentrarchus labrax) development. The European sea bass is a species of high commercial impact in European and especially Mediterranean aquaculture. This study reports, for the first time, the identification and characterization of small RNAs that play a part in the 10 developmental stages (from morula to all fins) of the European sea bass. From 10 developmental stages, more than 135 million reads, generated by next-generation sequencing, were retrieved from publicly available databases as well as newly generated. The analysis resulted in about 2,000 sample grouped reads, and their subsequently annotation revealed that the majority of transcripts belonged to the class of miRNAs followed by small nuclear RNAs and small nucleolar RNAs. The analysis of small RNA expression among the developmental stages under study revealed that miRNAs are active throughout development, with the main activity occurring after the earlier stages (morula and 50% epiboly) and at the later stages (first feeding, flexion, and all fins). Furthermore, investigating miRNAs exclusively expressed in one of the stages unraveled five miRNAs with a higher abundance only in the morula stage (miR-155, miR-430a, d1, d2, and miR-458), indicating possible important key roles of those miRNAs in further embryonic development. An additional target search showed putative miRNA-mRNA interactions with possible direct and indirect regulatory functions of the identified miRNAs.

14.
Dis Aquat Organ ; 82(1): 55-60, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19062753

RESUMO

This paper describes severe mortalities recorded in sharpsnout sea bream Diplodus puntazzo larvae reared in mesocosms. The mortalities were attributed to epitheliocystis infection. The pathology associated with the disease is described using histological techniques. Microscopical examination showed a massive infection of the skin, fins, and oral cavity, with impaired feeding, respiration, and osmoregulation being the most likely cause of death. This is the first report of epitheliocystis disease in sharpsnout sea bream and in fish at such an early developmental stage.


Assuntos
Infecções por Chlamydia/veterinária , Doenças dos Peixes/parasitologia , Dourada/parasitologia , Dermatopatias/veterinária , Animais , Aquicultura , Chlamydia/classificação , Chlamydia/isolamento & purificação , Infecções por Chlamydia/microbiologia , Larva/parasitologia , Dermatopatias/microbiologia , Dermatopatias/patologia
15.
Front Genet ; 9: 749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713551

RESUMO

Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30158900

RESUMO

The present study aimed to compare effects of increasing chronic stress load on the stress response of European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) to identify neuroendocrine functions that regulate this response. Fish were left undisturbed (controls) or exposed to three levels of chronic stress for 3 weeks and then subjected to an acute stress test (ACT). Chronic stress impeded growth and decreased feed consumption in seabass, not in seabream. In seabass basal cortisol levels are high and increase with stress load; the response to a subsequent ACT decreases with increasing (earlier) load. Basal cortisol levels in seabream increase with the stress load, whereas the ACT induced a similar response in all groups. In seabass and seabream plasma α-MSH levels and brain stem serotonergic activity and turnover were similar and not affected by chronic stress. Species-specific molecular neuro-regional differences were seen. In-situ hybridization analysis of the early immediate gene cfos in the preoptic area showed ACT-activation in seabream; in seabass the expression level was not affected by ACT and seems constitutively high. In seabream, expression levels of telencephalic crf, crfbp, gr1, and mr were downregulated; the seabass hypothalamic preoptic area showed increased expression of crf and gr1, and decreased expression of mr, and this increased the gr1/mr ratio considerably. We substantiate species-specific physiological differences to stress coping between seabream and seabass at an endocrine and neuroendocrine molecular level. Seabass appear less resilient to stress, which we conclude from high basal activities of stress-related parameters and poor, or absent, responses to ACT. This comparative study reveals important aquaculture, husbandry, and welfare implications for the rearing of these species.

17.
Gigascience ; 6(12): 1-13, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126158

RESUMO

Background: Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings: Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion: The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Feminino , Peixes/classificação , Regulação da Expressão Gênica , Gônadas/metabolismo , Masculino , Anotação de Sequência Molecular , Músculos/metabolismo , Especificidade de Órgãos , Caracteres Sexuais
18.
G3 (Bethesda) ; 6(3): 509-19, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715088

RESUMO

Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts.


Assuntos
Mapeamento Cromossômico , Peixes/genética , Ligação Genética , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Evolução Biológica , Peixes/classificação , Loci Gênicos , Genômica/métodos , Filogenia
19.
PLoS One ; 9(2): e87744, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503907

RESUMO

The Atlantic bonito (Sarda sarda, Bloch 1793) belongs to the important marine fish species with a wide geographical distribution covering the Atlantic Ocean, the Mediterranean and its bordering seas. Aquaculture practices for this species are still in their infancies and scientific studies are seldom undertaken, mainly because of difficulties in sampling. Thus for small tuna species like the Atlantic bonito only little is known about its biology and regarding the molecular background even less information is available. In the production of marine fish it is known that the most critical period is the larval stages, as high growth rates as well as significant developmental changes take place. In this study we have investigated the transcriptome of the Atlantic bonito of five larvae stages applying Illumina sequencing technology. For non-model species like aquaculture species, transcriptome analysis of RNA samples from individuals using Illumina sequencing technology is technically efficient and cost effective. In the present study a total number of 169,326,711 paired-end reads with a read length of 100 base pairs were generated resulting in a reference transcriptome of 68,220 contigs with an average length of 2054 base pairs. For differential expression analyses single end reads were obtained from different developmental stages and mapped to the constructed reference transcriptome. Differential expression analyses revealed in total 18,657 differentially expressed transcripts and were assigned to five distinguished groups. Each of the five clusters shows stage specific gene expression. We present for the first time in the Atlantic bonito an extensive RNA-Seq based characterization of its transcriptome as well as significant information on differential expression among five developmental larvae stages. The generated transcripts, including SNP and microsatellite information for candidate molecular markers and gene expression information will be a valuable resource for future genetic and molecular studies.


Assuntos
Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Transcriptoma , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Análise por Conglomerados , Peixes/classificação , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
20.
Int J Dev Biol ; 54(8-9): 1317-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20711999

RESUMO

The lateral line system of amphibians and fish comprises a large number of individual mechanosensory organs, the neuromasts, and their sensory neurons. The pattern of neuromasts varies markedly between species, yet the embryonic pattern is highly conserved from the relatively basal zebrafish, Danio rerio, to more derived species. Here we examine in more detail the development of the posterior lateral line (PLL) in embryos and early larvae of one of the most derived fish species, the blue-fin tuna Thunnus thynnus, and of its close relative, the Atlantic bonito Sarda sarda. We show that the basic features of embryonic PLL development, including the migratory properties of the PLL primordium, the patterning of neuromasts and their innervation, are largely conserved between zebrafish and tuna. However, Thunnus and Sarda embryos differ from Danio in three respects: the larger size of the neuromast cupula, the capability of mature neuromasts to migrate dorsally, and the presence of a single, precisely located terminal neuromast.


Assuntos
Embrião não Mamífero/embriologia , Sistema da Linha Lateral/embriologia , Perciformes/embriologia , Atum/embriologia , Animais , Padronização Corporal , Embrião não Mamífero/citologia , Feminino , Larva/citologia , Larva/crescimento & desenvolvimento , Sistema da Linha Lateral/citologia , Masculino , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Atum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa