Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
2.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762490

RESUMO

We studied the immunotherapeutic potential of CF33-hNIS-antiPDL1 oncolytic virus (OV) against gastric cancer with peritoneal metastasis (GCPM). We collected fresh malignant ascites (MA) or peritoneal washings (PW) during routine paracenteses and diagnostic laparoscopies from GC patients (n = 27). Cells were analyzed for cancer cell markers and T cells, or treated with PBS, CF33-GFP, or CF33-hNIS-antiPDL1 (MOI = 3). We analyzed infectivity, replication, cytotoxicity, CD107α upregulation of CD8+ and CD4+ T cells, CD274 (PD-L1) blockade of cancer cells by virus-encoded anti-PD-L1 scFv, and the release of growth factors and cytokines. We observed higher CD45-/large-size cells and lower CD8+ T cell percentages in MA than PW. CD45-/large-size cells were morphologically malignant and expressed CD274 (PD-L1), CD252 (OX40L), and EGFR. CD4+ and CD8+ T cells did not express cell surface exhaustion markers. Virus infection and replication increased cancer cell death at 15 h and 48 h. CF33-hNIS-antiPDL1 treatment produced functional anti-PD-L1 scFv, which blocked surface PD-L1 binding of live cancer cells and increased CD8+CD107α+ and CD4+CD107α+ T cell percentages while decreasing EGF, PDGF, soluble anti-PD-L1, and IL-10. CF33-OVs infect, replicate in, express functional proteins, and kill ex vivo GCPM cells with immune-activating effects. CF33-hNIS-antiPDL1 displays real potential for intraperitoneal GCPM therapy.

3.
Mol Ther ; 29(7): 2335-2349, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647456

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.


Assuntos
Ciclofosfamida/farmacologia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Neoplasias da Próstata/terapia , Microambiente Tumoral , Animais , Antígenos de Neoplasias/genética , Apoptose , Proliferação de Células , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Mieloablativos/farmacologia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Opt Express ; 28(11): 17122-17123, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549521

RESUMO

An erratum is presented to correct the caption of Fig. 1 and the citation number in Fig. 7(d) in the original article [Opt. Express 27, 17581 (2019)].

5.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023064

RESUMO

Oncolytic viroimmunotherapy is an exciting modality that can offer lasting anti-tumor immunity for aggressive malignancies like colon cancer. The impact of oncolytic viruses may be extended by combining them with agents to prime a tumor for viral susceptibility. This study investigates vitamin D analogue as an adjunct to oncolytic viral therapy for colon cancer. While vitamin D (VD) has historically been viewed as anti-viral, our in vitro investigations using human colon cancer cell lines showed that VD does not directly inhibit replication of recombinant chimeric poxvirus CF33. VD did restrict growth in HT29 but not HCT116 human colon cancer cells. In vivo investigations using HCT116 and HT29 xenograft models of colon cancer demonstrated that a VD analogue, calcipotriol, was additive with CF33-based viral therapy in VD-responsive HT29 but not in HCT116 tumors. Analyses of RNA-sequencing and gene expression data demonstrated a downregulation in the Jak-STAT signaling pathway with the addition of VD to viral therapy in HT29 models suggesting that the anti-inflammatory properties of VD may enhance the effects of viral therapy in some models. In conclusion, VD may prime oncolytic viral therapy in certain colon cancers.


Assuntos
Neoplasias do Colo/terapia , Terapia Viral Oncolítica , Replicação Viral/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Sequência de Bases/genética , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/virologia , Terapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Imunoterapia/métodos , Camundongos , Vírus Oncolíticos/genética , Vitamina D/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Opt Express ; 27(5): 6147-6157, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876207

RESUMO

A ring resonator based 4 channel wavelength division multiplexing (WDM) receiver with polarization diversity is demonstrated at 10 Gb/s per channel. By forming a waveguide loop between the two output ports of a polarization splitter-rotator (PSR), the input signals in the quasi-transverse-electric (quasi-TE) and the quasi-transverse-magnetic (quasi-TM) polarizations can be demultiplexed by the same set of ring resonator filters, thus reducing the number of required channel control circuits by half compared to methods which process the two polarizations individually. Large signal measurement results indicate that the design can tolerate a signal delay of up to 30% of the unit interval (UI) between the two polarizations, which implies that compensating for manufacturing variability with optical delay lines on chip is not necessary for a robust operation. The inter-channel crosstalk is found negligible down to 0.4nm (50 GHz) spacing, at which point the adjacent channel isolation is 17 dB, proving the design's compatibility for dense WDM application.

7.
Opt Express ; 27(13): 17581-17591, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252715

RESUMO

We propose and demonstrate broadband, entirely mode-evolution-based, polarization splitter-rotators (PSR) using sub-wavelength grating (SWG) assisted adiabatic waveguides for two SOI platforms. Our PSRs are more compact than previously demonstrated entirely mode-evolution-based designs. The devices were fabricated using two fabrication processes and, in both cases, the measured spectra show close matches to the simulation results. One of the processes uses standard optical lithography and, hence, this is the first time that an SWG-based PSR has been experimentally implemented using such a process. Finally, measurements for arbitrary input polarizations on an active, automated polarization receiver, that uses one of our PSRs, are also presented.

8.
Opt Express ; 27(19): 26661-26675, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674542

RESUMO

Fabrication errors currently hold back the large-scale adoption of silicon micro-ring modulators (MRMs). The ability to correct their spectral features post-fabrication is required to enable their commercialization. Here, we report and demonstrate an MRM that uses a tunable two-point coupling scheme, which maintains the MRM's compact footprint (60 µm×45 µm) and allows one to tune the MRM's operating wavelength and adjust the optical bandwidth (and/or extinction ratio). This means that one can compensate for fabrication errors and thereby improve the yields. We confirm the modulator's operation by showing NRZ and PAM-4 modulation, up to 28 Gb/s and 19.9 Gb/s, respectively. Also, the proposed tunable MRM maintains the microring's free-spectral range (FSR), which proves its compatibility for configurable and high-bandwidth DWDM applications.

9.
J Transl Med ; 16(1): 110, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29699566

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has been increasing by 0.5% per year in the United States. PDAC portends a dismal prognosis and novel therapies are needed. This study describes the generation and characterization of a novel oncolytic chimeric orthopoxvirus for the treatment of pancreatic cancer. METHODS: After chimerization and high-throughput screening, CF33 was chosen from 100 new chimeric orthopoxvirus isolates for its ability to kill pancreatic cancer cells. In vitro cytotoxicity was assayed in six pancreatic cancer cell lines. In vivo efficacy and toxicity were evaluated in PANC-1 and MIA PaCa-2 xenograft models. RESULTS: CF33 caused rapid killing of six pancreatic cancer cells lines in vitro, releasing damage-associated molecular patterns, and regression of PANC-1 injected and non-injected distant xenografts in vivo after a single low intratumoral dose of 103 plaque-forming units. Using luciferase imaging, CF33 was noted to preferentially replicate in tumors which corresponds to the low viral titers found in solid organs. CONCLUSION: The low dose of CF33 required to treat pancreatic cancer in this preclinical study may ease the manufacturing and dosing challenges currently facing oncolytic viral therapy.


Assuntos
Terapia Viral Oncolítica , Orthopoxvirus/fisiologia , Neoplasias Pancreáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Quimera , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Humanos , Luciferases/metabolismo , Orthopoxvirus/isolamento & purificação , Neoplasias Pancreáticas/patologia , Replicação Viral
10.
Opt Express ; 26(8): 9552-9564, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715904

RESUMO

Coupled cavities have been used previously to realize on-chip low-dispersion slow-light waveguides, but the bandwidth was usually narrower than 10 nm and the total length was much shorter than 1 mm. Here we report long (0.05-2.5 mm) slow-light coupled cavity waveguides formed by using 50, 200, and 1,000 L3 photonic crystal nanocavities with an optical volume smaller than (λ/n)3, slanted from Γ-K orientation. We demonstrate experimentally the formation of a single-mode wideband coupled cavity mode with a bandwidth of up to 32nm (4THz) in telecom C-band, generated from the ultra-narrow-band (~300 MHz) fundamental mode of each L3 nanocavity, by controlling the cavity array orientation. Thanks to the ultrahigh-Q nanocavity design, coupled cavity waveguides longer than 1 mm exhibited low loss and allowed time-of-flight dispersion measurement over a bandwidth up to 22 nm by propagating a short pulse over 1,000 coupled L3 nanocavities. The highly-dense slanted array of L3 nanocavity demonstrated unprecedentedly high cavity coupling among the nanocavities. The scheme we describe provides controllable planar dispersion-managed waveguides as an alternative to W1-based waveguides on a photonic crystal chip.

11.
J Neurophysiol ; 118(1): 507-519, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331010

RESUMO

The posterior nucleus of thalamus (PO) is a higher-order nucleus involved in sensorimotor processing, including nociception. An important characteristic of PO is its wide range of activity profiles that vary across states of arousal, thought to underlie differences in somatosensory perception subject to attention and degree of consciousness. Furthermore, PO loses the ability to downregulate its activity level in some forms of chronic pain, suggesting that regulatory mechanisms underlying the normal modulation of PO activity may be pathologically altered. However, the mechanisms responsible for regulating such a wide dynamic range of activity are unknown. Here, we test a series of hypotheses regarding the function of several presynaptic receptors on both GABAergic and glutamatergic afferents targeting PO in mouse, using acute slice electrophysiology. We found that presynaptic GABAB receptors are present on both GABAergic and glutamatergic terminals in PO, but only those on GABAergic terminals are tonically active. We also found that release from GABAergic terminals, but not glutamatergic terminals, is suppressed by cholinergic activation and that a subpopulation of GABAergic terminals is regulated by cannabinoids. Finally, we discovered the presence of tonic currents mediated by extrasynaptic GABAA receptors in PO that are heterogeneously distributed across the nucleus. Thus we demonstrate that multiple regulatory mechanisms concurrently exist in PO, and we propose that regulation of inhibition, rather than excitation, is the more consequential mechanism by which PO activity can be regulated.NEW & NOTEWORTHY The posterior nucleus of thalamus (PO) is a key sensorimotor structure, whose activity is tightly regulated by inhibition from several nuclei. Maladaptive plasticity in this inhibition leads to severe pathologies, including chronic pain. We reveal here, for the first time in PO, multiple regulatory mechanisms that modulate synaptic transmission within PO. These findings may lead to targeted therapies for chronic pain and other disorders.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Núcleos Posteriores do Tálamo/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Núcleos Posteriores do Tálamo/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/efeitos dos fármacos , Técnicas de Cultura de Tecidos
12.
Circ Res ; 114(9): 1422-34, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24650916

RESUMO

RATIONALE: Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. OBJECTIVE: To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. METHODS AND RESULTS: High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. CONCLUSIONS: The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Regeneração/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA não Traduzido/genética , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
13.
J Neurophysiol ; 112(10): 2580-96, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143541

RESUMO

The posterior thalamic nucleus (PO) is a higher order nucleus heavily implicated in the processing of somatosensory information. We have previously shown in rodent models that activity in PO is tightly regulated by inhibitory inputs from a GABAergic nucleus known as the zona incerta (ZI). The level of incertal inhibition varies under both physiological and pathological conditions, leading to concomitant changes in PO activity. These changes are causally linked to variety of phenomena from altered sensory perception to pathological pain. ZI regulation of PO is mediated by GABAA and GABAB receptors (GABAAR and GABABR) that differ in their binding kinetics and their electrophysiological properties, suggesting that each may have distinct roles in incerto-thalamic regulation. We developed a computational model to test this hypothesis. We created a two-cell Hodgkin-Huxley model representing PO and ZI with kinetically realistic GABAAR- and GABABR-mediated synapses. We simulated spontaneous and evoked firing in PO and observed how these activities were affected by inhibition mediated by each receptor type. Our model predicts that spontaneous PO activity is preferentially regulated by GABABR-mediated mechanisms, while evoked activity is preferentially regulated by GABAAR. Our model also predicts that modulation of ZI firing rate and synaptic GABA concentrations is an effective means to regulate the incerto-thalamic circuit. The coupling of distinct functions to GABAAR and GABABR presents an opportunity for the development of therapeutics, as particular aspects of incerto-thalamic regulation can be targeted by manipulating the corresponding receptor class. Thus these findings may provide interventions for pathologies of sensory processing.


Assuntos
Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Tálamo/fisiologia , Zona Incerta/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Cinética , Modelos Neurológicos , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1115-29, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25301186

RESUMO

Damage to the enteric nervous system (ENS) associated with intestinal inflammation may underlie persistent alterations to gut functions, suggesting that enteric neurons are viable targets for novel therapies. Mesenchymal stem cells (MSCs) offer therapeutic benefits for attenuation of neurodegenerative diseases by homing to areas of inflammation and exhibiting neuroprotective, anti-inflammatory, and immunomodulatory properties. In culture, MSCs release soluble bioactive factors promoting neuronal survival and suppressing inflammation suggesting that MSC-conditioned medium (CM) provides essential factors to repair damaged tissues. We investigated whether MSC and CM treatments administered by enema attenuate 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-induced enteric neuropathy and motility dysfunction in the guinea pig colon. Guinea pigs were randomly assigned to experimental groups and received a single application of TNBS (30 mg/kg) followed by 1 × 10(6) human bone marrow-derived MSCs, 300 µl CM, or 300 µl unconditioned medium 3 h later. After 7 days, the effect of these treatments on enteric neurons was assessed by histological, immunohistochemical, and motility analyses. MSC and CM treatments prevented inflammation-associated weight loss and gross morphological damage in the colon; decreased the quantity of immune infiltrate in the colonic wall (P < 0.01) and at the level of the myenteric ganglia (P < 0.001); prevented loss of myenteric neurons (P < 0.05) and damage to nerve processes, changes in ChAT, and nNOS immunoreactivity (P < 0.05); and alleviated inflammation-induced colonic dysmotility (contraction speed; P < 0.001, contractions/min; P < 0.05). These results provide strong evidence that both MSC and CM treatments can effectively prevent damage to the ENS and alleviate gut dysfunction caused by TNBS-induced colitis.


Assuntos
Colite/induzido quimicamente , Colite/prevenção & controle , Sistema Nervoso Entérico/patologia , Transplante de Células-Tronco Mesenquimais , Doenças do Sistema Nervoso Periférico/prevenção & controle , Ácido Trinitrobenzenossulfônico , Animais , Movimento Celular/fisiologia , Colite/patologia , Colo/patologia , Meios de Cultivo Condicionados , Feminino , Motilidade Gastrointestinal , Humanos , Masculino , Camundongos , Redução de Peso/efeitos dos fármacos
15.
J Am Coll Surg ; 238(4): 436-447, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214445

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting the B-cell antigen CD19 are standard therapy for relapsed or refractory B-cell lymphoma and leukemia. CAR T cell therapy in solid tumors is limited due to an immunosuppressive tumor microenvironment and a lack of tumor-restricted antigens. We recently engineered an oncolytic virus (CF33) with high solid tumor affinity and specificity to deliver a nonsignaling truncated CD19 antigen (CD19t), allowing targeting by CD19-CAR T cells. Here, we tested this combination against pancreatic cancer. STUDY DESIGN: We engineered CF33 to express a CD19t (CF33-CD19t) target. Flow cytometry and ELISA were performed to quantify CD19t expression, immune activation, and killing by virus and CD19-CAR T cells against various pancreatic tumor cells. Subcutaneous pancreatic human xenograft tumor models were treated with virus, CAR T cells, or virus+CAR T cells. RESULTS: In vitro, CF33-CD19t infection of tumor cells resulted in >90% CD19t cell-surface expression. Coculturing CD19-CAR T cells with infected cells resulted in interleukin-2 and interferon gamma secretion, upregulation of T-cell activation markers, and synergistic cell killing. Combination therapy of virus+CAR T cells caused significant tumor regression (day 13): control (n = 16, 485 ± 20 mm 3 ), virus alone (n = 20, 254 ± 23 mm 3 , p = 0.0001), CAR T cells alone (n = 18, 466 ± 25 mm 3 , p = NS), and virus+CAR T cells (n = 16, 128 ± 14 mm 3 , p < 0.0001 vs control; p = 0.0003 vs virus). CONCLUSIONS: Engineered CF33-CD19t effectively infects and expresses CD19t in pancreatic tumors, triggering cell killing and increased immunogenic response by CD19-CAR T cells. Notably, CF33-CD19t can turn cold immunologic tumors hot, enabling solid tumors to be targetable by agents designed against liquid tumor antigens.


Assuntos
Vírus Oncolíticos , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante , Antígenos CD19/metabolismo , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
16.
Nat Commun ; 15(1): 7863, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251592

RESUMO

Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.


Assuntos
Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Cicatrização , Animais , Linfócitos T Reguladores/imunologia , Cicatrização/imunologia , Interleucina-10/metabolismo , Interleucina-10/genética , Humanos , Camundongos , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Pele/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino
17.
Am J Manag Care ; 29(11): 566-572, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948643

RESUMO

OBJECTIVES: To estimate excess health care costs in the 12 months following COVID-19 diagnosis. STUDY DESIGN: Retrospective cohort study using Blue Cross Blue Shield of Rhode Island claims incurred from January 1, 2019, to March 31, 2022, among commercial and Medicare Advantage members. METHODS: Difference-in-differences analyses were used to compare changes in health care spend between the 12 months before (baseline period) and the 12 months after (post period) COVID-19 diagnosis for COVID-19 cases and contemporaneous matched controls without COVID-19. RESULTS: Overall, there were 7224 commercial and 1630 Medicare Advantage members with a COVID-19 diagnosis on/before March 31, 2021, each with a matched control, yielding a sample of 14,448 commercial and 3260 Medicare Advantage members. Among commercial members, 51.9% were aged 25 to 54 years and 54.0% were female. Among Medicare Advantage members, 94.2% were 65 years or older and 62.0% were female. Among commercial members, from the baseline period to the post period, total health care spend increased $41.61 (7.7%) per member per month (PMPM) more among COVID-19 cases compared with their matched controls. Among Medicare Advantage members, the difference-in-differences was greater, with spend increasing $97.30 (13.1%) PMPM more among cases compared with controls. The difference-in-differences was greatest for outpatient and professional services (both populations) and prescription services (Medicare Advantage only). CONCLUSIONS: COVID-19 diagnosis was associated with excess health care spend PMPM over the subsequent 12 months, highlighting the importance of societal preparations to support individuals' long-term health care needs following COVID-19 and as a part of future pandemic preparedness.


Assuntos
Teste para COVID-19 , COVID-19 , Estados Unidos/epidemiologia , Idoso , Feminino , Humanos , Masculino , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Medicare , Custos de Cuidados de Saúde
18.
Mol Ther Oncolytics ; 31: 100734, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37915757

RESUMO

Gastric cancer (GC) peritoneal metastasis (PM) is fatal without effective therapy. We investigated CF17, a new replication-competent chimeric poxvirus, against GC cell lines in vitro and PM in an aggressive GCPM mouse model. We performed viral proliferation and cytotoxicity assays on intestinal-type and diffuse-type human GC cell lines following CF17 treatment. At lower MOIs of 0.01, 0.1, there was >80% killing in most cell lines, while in the more aggressive cell lines, killing was seen at higher MOIs of 1.0 and 10.0. We observed reduced peritoneal tumor burden and prolonged survival with intraperitoneal (i.p.) CF17 treatment in nude mice implanted with the resistant GC cell line. At day 91 after treatment, seven of eight mice were alive in the CF17-treated group vs. one of eight mice in the control group. CF17 treatment inhibited ascites formation (0% vs. 62.5% with PBS). Thus, CF17 efficiently infected, replicated in, and killed GC cells in a dose- and time-dependent manner in vitro. In vivo, i.p. CF17 treatment exhibited robust antitumor activity against an aggressive GCPM model to decrease tumor burden, improve survival, and prevent ascites formation. These preclinical results inform the design of future clinical trials of CF17 for peritoneal-directed therapy in GCPM patients.

19.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019471

RESUMO

BACKGROUND: Gastric cancer (GC) that metastasizes to the peritoneum is fatal. CF33 and its genetically modified derivatives show cancer selectivity and oncolytic potency against various solid tumors. CF33-hNIS and CF33-hNIS-antiPDL1 have entered phase I trials for intratumoral and intravenous treatments of unresectable solid tumors (NCT05346484) and triple-negative breast cancer (NCT05081492). Here, we investigated the antitumor activity of CF33-oncolytic viruses (OVs) against GC and CF33-hNIS-antiPDL1 in the intraperitoneal (IP) treatment of GC peritoneal metastases (GCPM). METHODS: We infected six human GC cell lines AGS, MKN-45, MKN-74, KATO III, SNU-1, and SNU-16 with CF33, CF33-GFP, or CF33-hNIS-antiPDL1 at various multiplicities of infection (0.01, 0.1, 1.0, and 10.0), and performed viral proliferation and cytotoxicity assays. We used immunofluorescence imaging and flow cytometric analysis to verify virus-encoded gene expression. We evaluated the antitumor activity of CF33-hNIS-antiPDL1 following IP treatment (3×105 pfu × 3 doses) in an SNU-16 human tumor xenograft model using non-invasive bioluminescence imaging. RESULTS: CF33-OVs showed dose-dependent infection, replication, and killing of both diffuse and intestinal subtypes of human GC cell lines. Immunofluorescence imaging showed virus-encoded GFP, hNIS, and anti-PD-L1 antibody scFv expression in CF33-OV-infected GC cells. We confirmed GC cell surface PD-L1 blockade by virus-encoded anti-PD-L1 scFv using flow cytometry. In the xenograft model, CF33-hNIS-antiPDL1 (IP; 3×105 pfu × 3 doses) treatment significantly reduced peritoneal tumors (p<0.0001), decreased amount of ascites (62.5% PBS vs 25% CF33-hNIS-antiPDL1) and prolonged animal survival. At day 91, seven out of eight mice were alive in the virus-treated group versus one out of eight in the control group (p<0.01). CONCLUSIONS: Our results show that CF33-OVs can deliver functional proteins and demonstrate effective antitumor activity in GCPM models when delivered intraperitoneally. These preclinical results will inform the design of future peritoneal-directed therapy in GCPM patients.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Neoplasias Peritoneais/terapia , Terapia Viral Oncolítica/métodos , Peritônio/patologia , Neoplasias Gástricas/patologia
20.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067366

RESUMO

Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa