Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1094241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866335

RESUMO

Introduction: Because of the steady increase in the use of synthetic opioids in women of childbearing age, a large number of children are at risk of exposure to these drugs prenatally or postnatally through breast milk. While there is older literature looking at the effects of morphine and heroin, there are relatively few studies looking at the long-term effects of high-potency synthetic opioid compounds like fentanyl. Thus, in the present study, we assessed whether brief exposure to fentanyl in male and female rat pups during a period roughly equivalent to the third trimester of CNS development altered adolescent oral fentanyl self-administration and opioid-mediated thermal antinociception. Methods: We treated the rats with fentanyl (0, 10, or 100 µg/kg sc) from postnatal day (PD) 4 to PD 9. The fentanyl was administered daily in two injections given 6 h apart. After the last injection on PD 9, the rat pups were left alone until either PD 40 where they began fentanyl self-administration training or PD 60 where they were tested for morphine- (0, 1.25, 2.5, 5, or 10 mg/kg) or U50,488- (0, 2.5, 5, 10, or 20 mg/kg) induced thermal antinociception. Results: In the self-administration study, we found that female rats had more active nose pokes than male rats when receiving a fentanyl reward but not sucrose alone solution. Early neonatal fentanyl exposure did not significantly alter fentanyl intake or nose-poke response. In contrast, early fentanyl exposure did alter thermal antinociception in both male and female rats. Specifically, fentanyl (10 µg/kg) pre-treatment increased baseline paw-lick latencies, and the higher dose of fentanyl (100 µg/kg) reduced morphine-induced paw-lick latencies. Fentanyl pre-treatment did not alter U50,488-mediated thermal antinociception. Conclusions: Although our exposure model is not reflective of typical human fentanyl use during pregnancy, our study does illustrate that even brief exposure to fentanyl during early development can have long-lasting effects on mu-opioid-mediated behavior. Moreover, our data suggest that females may be more susceptible to fentanyl abuse than males.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 903-913, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205248

RESUMO

There is disagreement about whether the locomotor activity produced by serotonin (5-HT) 1A/1B receptor agonists is ultimately mediated through a dopaminergic mechanism or is independent of dopamine (DA) system functioning. Using a developing rat model, we examined whether DA neurotransmission is necessary for the locomotor activity produced by 5-HT1A/1B receptor stimulation. Depending on experiment, male and female preweanling rats were pretreated with vehicle, the monoamine-depleting agent reserpine, the 5-HT synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), the DA synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the D1 and D2 receptor antagonists SCH 23390 and raclopride, respectively. After completing the pretreatment regimen, the behavioral effects of saline and the 5-HT1A/1B receptor agonist RU 24969 were assessed during a 2-h test session. Locomotor activity in the center and margin of the testing chamber was recorded. RU 24969's locomotor activating effects were sensitive to blockade of the D2 receptor, but not the D1 receptor. The DA synthesis inhibitor (AMPT) significantly attenuated the RU 24969-induced locomotor activity of preweanling rats, as did the 5-HT synthesis inhibitor PCPA. The latter result suggests that presynaptic 5-HT1A/1B receptors may have a role in mediating RU 24969-induced locomotion during the preweanling period. DA neurotransmission, especially involving D2 receptors, is necessary for the 5-HT1A/1B-mediated locomotor activity of preweanling rats. The actions of PCPA, reserpine, and SCH 23390 differ substantially between preweanling and adult rats, suggesting that the neural mechanisms underlying these DA/5-HT interactions vary across ontogeny.


Assuntos
Dopamina/metabolismo , Indóis/farmacologia , Locomoção/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos
3.
Psychopharmacology (Berl) ; 237(8): 2469-2483, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32445054

RESUMO

RATIONALE: MK801, like other NMDA receptor open-channel blockers (e.g., ketamine and phencyclidine), increases the locomotor activity of rats and mice. Whether this behavioral effect ultimately relies on monoamine neurotransmission is of dispute. OBJECTIVE: The purpose of this study was to determine whether these psychopharmacological effects and underlying neural mechanisms vary according to sex and age. METHODS: Across four experiments, male and female preweanling and adolescent rats were pretreated with vehicle, the monoamine-depleting agent reserpine (1 or 5 mg/kg), the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), or both AMPT and PCPA. The locomotor activity of preweanling and adolescent rats was then measured after saline or MK801 (0.3 mg/kg) treatment. RESULTS: As expected, MK801 increased the locomotor activity of all age groups and both sexes, but the stimulatory effects were significantly less pronounced in male adolescent rats. Preweanling rats and adolescent female rats were more sensitive to the effects of DA and 5-HT synthesis inhibitors, as AMPT and PCPA caused only small reductions in the MK801-induced locomotor activity of male adolescent rats. Co-administration of AMPT+PCPA or high-dose reserpine (5 mg/kg) treatment substantially reduced MK801-induced locomotor activity in both age groups and across both sexes. CONCLUSIONS: These results, when combined with other recent studies, show that NMDA receptor open-channel blockers cause pronounced age-dependent behavioral effects that can vary according to sex. The neural changes underlying these sex and age differences appear to involve monoamine neurotransmission.


Assuntos
Maleato de Dizocilpina/farmacologia , Dopamina/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/fisiologia , Serotonina/fisiologia , Maturidade Sexual/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antagonistas de Dopamina/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Fatores Sexuais , Maturidade Sexual/efeitos dos fármacos
4.
Behav Brain Res ; 379: 112267, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31593789

RESUMO

Ketamine significantly increases the locomotor activity of rodents, however this effect varies according to the sex and age of the animal being tested. To determine the role monoamine systems play in ketamine's locomotor activating effects: (a) male and female preweanling, adolescent, and adult rats were pretreated with vehicle or the monoamine depleting agent reserpine (1 or 5 mg/kg), and (b) the behavioral actions of ketamine (20 or 40 mg/kg) were then compared to d-amphetamine (2 mg/kg) and cocaine (10 or 15 mg/kg). The ability of reserpine to deplete dorsal striatal dopamine (DA) and serotonin (5-HT) in male and female rats was determined using HPLC. Ketamine caused substantial increases in the locomotion of preweanling rats and older female rats (adolescents and adults), but had only small stimulatory effects on adolescent and adult male rats. When compared to cocaine and d-amphetamine, ketamine was especially sensitive to the locomotor-inhibiting effects of monoamine depletion. Ketamine-induced locomotion is at least partially mediated by monoamine systems, since depleting DA and 5-HT levels by 87-96% significantly attenuated the locomotor activating effects of ketamine in male and female rats from all three age groups. When administered to reserpine-pretreated rats, ketamine produced a different pattern of behavioral effects than either psychostimulant, suggesting that ketamine does not stimulate locomotor activity via actions at the presynaptic terminal. Instead, our results are consistent with the hypothesis that ketamine increases locomotor activity through a down-stream mechanism, possibly involving ascending DA and/or 5-HT projection neurons.


Assuntos
Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Fatores Etários , Animais , Cocaína/farmacologia , Dextroanfetamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Ketamina/administração & dosagem , Masculino , Inibidores da Captação de Neurotransmissores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reserpina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais
5.
Behav Brain Res ; 379: 112302, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655095

RESUMO

The pattern of ketamine-induced locomotor activity varies substantially across ontogeny and according to sex. Although ketamine is classified as an NMDA channel blocker, it appears to stimulate the locomotor activity of both male and female rats via a monoaminergic mechanism. To more precisely determine the neural mechanisms underlying ketamine's actions, male and female preweanling and adolescent rats were pretreated with vehicle, the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA). After completion of the pretreatment regimen, the locomotor activating effects of saline, ketamine, d-amphetamine, and cocaine were assessed during a 2 h test session. In addition, the ability of AMPT and PCPA to reduce dorsal striatal DA and 5-HT content was measured in male and female preweanling, adolescent, and adult rats. Results showed that AMPT and PCPA reduced, but did not fully attenuate, the ketamine-induced locomotor activity of preweanling rats and female adolescent rats. Ketamine (20 and 40 mg/kg) caused a minimal amount of locomotor activity in male adolescent rats, and this effect was not significantly modified by AMPT or PCPA pretreatment. When compared to ketamine, d-amphetamine and cocaine produced different patterns of locomotor activity across ontogeny; moreover, AMPT and PCPA pretreatment affected psychostimulant- and ketamine-induced locomotion differently. When these results are considered together, it appears that both dopaminergic and serotonergic mechanisms mediate the ketamine-induced locomotor activity of preweanling and female adolescent rats. The dichotomous actions of ketamine relative to the psychostimulants in vehicle-, AMPT-, and PCPA-treated rats, suggests that ketamine modulates DA and 5-HT neurotransmission through an indirect mechanism.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Dextroanfetamina/farmacologia , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fenclonina/análogos & derivados , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Serotoninérgicos/farmacologia , alfa-Metiltirosina/farmacologia , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Dextroanfetamina/administração & dosagem , Dopaminérgicos/administração & dosagem , Interações Medicamentosas , Inibidores Enzimáticos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Fenclonina/administração & dosagem , Fenclonina/farmacologia , Ketamina/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Serotoninérgicos/administração & dosagem , alfa-Metiltirosina/administração & dosagem
6.
Eur Neuropsychopharmacol ; 29(6): 740-755, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981586

RESUMO

Although ketamine has long been known to increase locomotor activity, only recently was it realized that this behavioral effect varies according to both sex and age. The purpose of the present study was threefold: first, to measure the locomotor activating effects of ketamine in male and female rats across early ontogeny and into adulthood; second, to assess ketamine and norketamine pharmacokinetics in the dorsal striatum and hippocampus of the same age groups; and, third, to use curvilinear regression to determine the relationship between locomotor activity and dorsal striatal concentrations of ketamine and norketamine. A high dose of ketamine (80 mg/kg, i.p.) was administered in order to examine the complete cycle of locomotor responsiveness across a 280-min testing session. In separate groups of rats, the dorsal striata and hippocampi were removed at 10 time points (0-360 min) after ketamine administration and samples were assayed for ketamine, norketamine, and dopamine using HPLC. In female rats, ketamine produced high levels of locomotor activity that varied only slightly among age groups. Male preweanling rats responded like females, but adolescent and adult male rats exhibited lesser amounts of ketamine-induced locomotor activity. Ketamine and norketamine pharmacokinetics, especially peak values and area under the curve, generally mirrored age- and sex-dependent differences in locomotor activity. Among male rats and younger female rats, dorsal striatal ketamine and norketamine levels accounted for a large proportion of the variance in locomotor activity. In adult female rats, however, an additional factor, perhaps involving other ketamine and norketamine metabolites, was influencing locomotor activity.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Ketamina/farmacologia , Ketamina/farmacocinética , Locomoção/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Animais Recém-Nascidos , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Neostriado/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa