Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267904

RESUMO

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Assuntos
Proteínas Associadas a CRISPR , RNA , DNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética
2.
Nature ; 613(7945): 775-782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442503

RESUMO

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Holoenzimas , Complexos Multiproteicos , RNA Guia de Sistemas CRISPR-Cas , Transposases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Edição de Genes/métodos , Transposases/química , Transposases/metabolismo , Transposases/ultraestrutura , RNA Guia de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Microscopia Crioeletrônica , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 119(32): e2202590119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914146

RESUMO

CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cianobactérias , Elementos de DNA Transponíveis , Transposases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Cianobactérias/enzimologia , Cianobactérias/genética , Proteínas de Ligação a DNA/metabolismo , Transposases/genética , Transposases/metabolismo
4.
Biochemistry ; 59(3): 285-289, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31644266

RESUMO

The modular biosynthetic pathway of ribosomally synthesized and post-translationally modified peptides (RiPPs) enhances their engineering potential for exploring new structures and biological functions. The ω-ester-containing peptides (OEPs), a subfamily of RiPPs, have distinct side-to-side ester or amide linkages and frequently present more than one macrocyclic domain in a "beads-on-a-string" structure. In an effort to improve the engineering potential of RiPPs, we present here the idea that the multidomain architecture of an OEP, plesiocin, can be exploited to create a bifunctional modified peptide. Characterization of plesiocin variants revealed that strong chymotrypsin inhibition relies on the bicyclic structure of the domain in which a leucine residue in the hairpin loop functions as a specificity determinant. Four domains of plesiocin promote simultaneous binding of multiple enzymes, where the C-terminal domain binds chymotrypsin most efficiently. Using this information, we successfully engineered a plesiocin variant in which two different domains inhibit chymotrypsin and trypsin. This result suggests that the multidomain architecture of OEPs is a useful platform for engineering multifunctional hybrid RiPPs.


Assuntos
Quimotripsina/antagonistas & inibidores , Peptídeos/química , Engenharia de Proteínas , Vias Biossintéticas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Quimotripsina/química , Clonagem Molecular , Escherichia coli/genética , Ésteres/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/genética , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Ribossomos/química , Ribossomos/genética , Tripsina/química , Tripsina/genética , Inibidores da Tripsina/química
5.
J Am Chem Soc ; 142(6): 3013-3023, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961152

RESUMO

ω-Ester-containing peptides (OEPs) are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) containing intramolecular ω-ester or ω-amide bonds. Although their distinct side-to-side connections may create considerable topological diversity of multicyclic peptides, it is largely unknown how diverse ring patterns have been developed in nature. Here, using genome mining of biosynthetic enzymes of OEPs, we identified genes encoding nine new groups of putative OEPs with novel core consensus sequences, disclosing a total of ∼1500 candidate OEPs in 12 groups. Connectivity analysis revealed that OEPs from three different groups contain novel tricyclic structures, one of which has a distinct biosynthetic pathway where a single ATP-grasp enzyme produces both ω-ester and ω-amide linkages. Analysis of the enzyme cross-reactivity showed that, while enzymes are promiscuous to nonconserved regions of the core peptide, they have high specificity to the cognate core consensus sequence, suggesting that the enzyme-core pair has coevolved to create a unique ring topology within the same group and has sufficiently diversified across different groups. Collectively, our results demonstrate that the diverse ring topologies, in addition to diverse sequences, have been developed in nature with multiple ω-ester or ω-amide linkages in the OEP family of RiPPs.


Assuntos
Trifosfato de Adenosina/química , Enzimas/química , Evolução Química , Genoma , Peptídeos/química , Ésteres/química
6.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503092

RESUMO

Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.

7.
Science ; 380(6643): 410-415, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104586

RESUMO

Type VI CRISPR-Cas systems use RNA-guided ribonuclease (RNase) Cas13 to defend bacteria against viruses, and some of these systems encode putative membrane proteins that have unclear roles in Cas13-mediated defense. We show that Csx28, of type VI-B2 systems, is a transmembrane protein that assists to slow cellular metabolism upon viral infection, increasing antiviral defense. High-resolution cryo-electron microscopy reveals that Csx28 forms an octameric pore-like structure. These Csx28 pores localize to the inner membrane in vivo. Csx28's antiviral activity in vivo requires sequence-specific cleavage of viral messenger RNAs by Cas13b, which subsequently results in membrane depolarization, slowed metabolism, and inhibition of sustained viral infection. Our work suggests a mechanism by which Csx28 acts as a downstream, Cas13b-dependent effector protein that uses membrane perturbation as an antiviral defense strategy.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Prevotella , Clivagem do RNA , RNA Viral , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Bacteriófagos/metabolismo , Bacteriófago lambda/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Prevotella/enzimologia , Prevotella/virologia
8.
Science ; 382(6672): eadj8543, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972161

RESUMO

CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Transposases , Proteínas Associadas a CRISPR/genética , Microscopia Crioeletrônica , Transposases/genética , Transposases/metabolismo , Cianobactérias/enzimologia , Imagem Individual de Molécula , Edição de Genes/métodos
9.
Science ; 373(6556): 768-774, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385391

RESUMO

CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF3 These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Cianobactérias/química , Elementos de DNA Transponíveis , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Microscopia Crioeletrônica , Cianobactérias/genética , Cianobactérias/metabolismo , DNA Bacteriano/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , RNA Bacteriano/metabolismo , Transposases/química , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa