Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Methods ; 15(7): 554, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29899368

RESUMO

In the version of this article initially published, the authors erroneously reported the search mode that was used for ProSightPC 3.0 in the Online Methods and in Supplementary Table 3.

2.
Nat Methods ; 14(9): 909-914, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783154

RESUMO

Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography-tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteoma/análise , Proteoma/química , Software , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador , Algoritmos , Linguagens de Programação , Proteômica/métodos , Integração de Sistemas
3.
BMC Bioinformatics ; 15: 307, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25236673

RESUMO

BACKGROUND: Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. RESULTS: In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. CONCLUSIONS: A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Isomerismo , Modelos Teóricos , Dobramento de Proteína , Termodinâmica
4.
Cell Rep Methods ; 3(7): 100521, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533638

RESUMO

Targeted proteomics is widely utilized in clinical proteomics; however, researchers often devote substantial time to manual data interpretation, which hinders the transferability, reproducibility, and scalability of this approach. We introduce DeepMRM, a software package based on deep learning algorithms for object detection developed to minimize manual intervention in targeted proteomics data analysis. DeepMRM was evaluated on internal and public datasets, demonstrating superior accuracy compared with the community standard tool Skyline. To promote widespread adoption, we have incorporated a stand-alone graphical user interface for DeepMRM and integrated its algorithm into the Skyline software package as an external tool.


Assuntos
Proteômica , Software , Reprodutibilidade dos Testes , Espectrometria de Massas , Algoritmos
5.
Sci Rep ; 12(1): 12804, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896791

RESUMO

Colonoscopy is an effective tool to detect colorectal lesions and needs the support of pathological diagnosis. This study aimed to develop and validate deep learning models that automatically classify digital pathology images of colon lesions obtained from colonoscopy-related specimen. Histopathological slides of colonoscopic biopsy or resection specimens were collected and grouped into six classes by disease category: adenocarcinoma, tubular adenoma (TA), traditional serrated adenoma (TSA), sessile serrated adenoma (SSA), hyperplastic polyp (HP), and non-specific lesions. Digital photographs were taken of each pathological slide to fine-tune two pre-trained convolutional neural networks, and the model performances were evaluated. A total of 1865 images were included from 703 patients, of which 10% were used as a test dataset. For six-class classification, the mean diagnostic accuracy was 97.3% (95% confidence interval [CI], 96.0-98.6%) by DenseNet-161 and 95.9% (95% CI 94.1-97.7%) by EfficientNet-B7. The per-class area under the receiver operating characteristic curve (AUC) was highest for adenocarcinoma (1.000; 95% CI 0.999-1.000) by DenseNet-161 and TSA (1.000; 95% CI 1.000-1.000) by EfficientNet-B7. The lowest per-class AUCs were still excellent: 0.991 (95% CI 0.983-0.999) for HP by DenseNet-161 and 0.995 for SSA (95% CI 0.992-0.998) by EfficientNet-B7. Deep learning models achieved excellent performances for discriminating adenocarcinoma from non-adenocarcinoma lesions with an AUC of 0.995 or 0.998. The pathognomonic area for each class was appropriately highlighted in digital images by saliency map, particularly focusing epithelial lesions. Deep learning models might be a useful tool to help the diagnosis for pathologic slides of colonoscopy-related specimens.


Assuntos
Adenocarcinoma , Adenoma , Pólipos do Colo , Neoplasias Colorretais , Aprendizado Profundo , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adenoma/diagnóstico por imagem , Adenoma/patologia , Pólipos do Colo/diagnóstico por imagem , Pólipos do Colo/patologia , Colonoscopia/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Humanos
6.
Diagnostics (Basel) ; 12(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204638

RESUMO

Artificial intelligence has enabled the automated diagnosis of several cancer types. We aimed to develop and validate deep learning models that automatically classify cervical intraepithelial neoplasia (CIN) based on histological images. Microscopic images of CIN3, CIN2, CIN1, and non-neoplasm were obtained. The performances of two pre-trained convolutional neural network (CNN) models adopting DenseNet-161 and EfficientNet-B7 architectures were evaluated and compared with those of pathologists. The dataset comprised 1106 images from 588 patients; images of 10% of patients were included in the test dataset. The mean accuracies for the four-class classification were 88.5% (95% confidence interval [CI], 86.3-90.6%) by DenseNet-161 and 89.5% (95% CI, 83.3-95.7%) by EfficientNet-B7, which were similar to human performance (93.2% and 89.7%). The mean per-class area under the receiver operating characteristic curve values by EfficientNet-B7 were 0.996, 0.990, 0.971, and 0.956 in the non-neoplasm, CIN3, CIN1, and CIN2 groups, respectively. The class activation map detected the diagnostic area for CIN lesions. In the three-class classification of CIN2 and CIN3 as one group, the mean accuracies of DenseNet-161 and EfficientNet-B7 increased to 91.4% (95% CI, 88.8-94.0%), and 92.6% (95% CI, 90.4-94.9%), respectively. CNN-based deep learning is a promising tool for diagnosing CIN lesions on digital histological images.

7.
J Chem Inf Model ; 49(8): 1993-2001, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19621901

RESUMO

We present a tunable, machine vision-based strategy for automated annotation of virtual small molecule databases. The proposed strategy is based on the use of a machine vision-based tool for extracting structure diagrams in research articles and converting them into connection tables, a virtual "Chemical Expert" system for screening the converted structures based on the adjustable levels of estimated conversion accuracy, and a fragment-based measure for calculating intermolecular similarity. For annotation, calculated chemical similarity between the converted structures and entries in a virtual small molecule database is used to establish the links. The overall annotation performances can be tuned by adjusting the cutoff threshold of the estimated conversion accuracy. We perform an annotation test which attempts to link 121 journal articles registered in PubMed to entries in PubChem which is the largest, publicly accessible chemical database. Two cases of tests are performed, and their results are compared to see how the overall annotation performances are affected by the different threshold levels of the estimated accuracy of the converted structure. Our work demonstrates that over 45% of the articles could have true positive links to entries in the PubChem database with promising recall and precision rates in both tests. Furthermore, we illustrate that the Chemical Expert system which can screen converted structures based on the adjustable levels of estimated conversion accuracy is a key factor impacting the overall annotation performance. We propose that this machine vision-based strategy can be incorporated with the text-mining approach to facilitate extraction of contextual scientific knowledge about a chemical structure, from the scientific literature.


Assuntos
Inteligência Artificial , Bases de Dados Bibliográficas , Bases de Dados Factuais , Bibliotecas de Moléculas Pequenas , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Software
8.
Chem Cent J ; 3: 4, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19196483

RESUMO

BACKGROUND: To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. RESULTS: This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader - a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. CONCLUSION: The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links to scientific research articles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa