Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stem Cells ; 30(5): 997-1007, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378611

RESUMO

Recent studies suggested that induced pluripotent stem cells (iPSCs) retain a residual donor cell gene expression, which may impact their capacity to differentiate into cell of origin. Here, we addressed a contribution of a lineage stage-specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast-derived, HB-iPSCs) and end stage (adult hepatocyte, AH-iPSCs) of hepatocyte differentiation as well as from mouse embryonic fibroblasts (MEFs-iPSCs) using a lentiviral vector encoding four pluripotency-inducing factors Oct4, Sox2, Klf4, and c-Myc. All resulting iPSC lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay, and normal diploid karyotype. However, HB-iPSCs were more efficient in directed differentiation toward hepatocytic lineage as compared to AH-iPSCs, MEF-iPSCs, or mouse embryonic stem cells (mESCs). Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells, and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB-iPSCs retained a transcriptional memory (seven upregulated and 17 downregulated genes) typical of the original cells. Continuous passaging of HB-iPSCs erased most of these differences including a superior capacity for hepatic redifferentiation. These results suggest that retention of lineage stage-specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set may help to improve hepatic differentiation for therapeutic applications and contribute to the better understanding of liver development.


Assuntos
Desdiferenciação Celular , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Fatores de Transcrição/biossíntese , Animais , Células HEK293 , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Lentivirus , Fígado/citologia , Camundongos , Fatores de Transcrição/genética , Transdução Genética
2.
Mol Vis ; 18: 920-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539871

RESUMO

PURPOSE: To examine the potential of NIH-maintained human embryonic stem cell (hESC) lines TE03 and UC06 to differentiate into retinal progenitor cells (hESC-RPCs) using the noggin/Dkk-1/IGF-1/FGF9 protocol. An additional goal is to examine the in vivo dynamics of maturation and retinal integration of subretinal and epiretinal (vitreous space) hESC-RPC grafts without immunosuppression. METHODS: hESCs were neuralized in vitro with noggin for 2 weeks and expanded to derive neuroepithelial cells (hESC-neural precursors, NPs). Wnt (Integration 1 and wingless) blocking morphogens Dickkopf-1 (Dkk-1) and Insulin-like growth factor 1 (IGF-1) were used to direct NPs to a rostral neural fate, and fibroblast growth factor 9 (FGF9)/fibroblast growth factor-basic (bFGF) were added to bias the differentiation of developing anterior neuroectoderm cells to neural retina (NR) rather than retinal pigment epithelium (RPE). Cells were dissociated and grafted into the subretinal and epiretinal space of young adult (4-6-week-old) mice (C57BL/6J x129/Sv mixed background). Remaining cells were replated for (i) immunocytochemical analysis and (ii) used for quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Mice were sacrificed 3 weeks or 3 months after grafting, and the grafts were examined by histology and immunohistochemistry for survival of hESC-RPCs, presence of mature neuronal and retinal markers, and the dynamics of in vivo maturation and integration into the host retina. RESULTS: At the time of grafting, hESC-RPCs exhibited immature neural/neuronal immunophenotypes represented by nestin and neuronal class III ß-tubulin, with about half of the cells positive for cell proliferation marker Kiel University -raised antibody number 67 (Ki67), and no recoverin-positive (recoverin [+]) cells. The grafted cells expressed eye field markers paired box 6 (PAX6), retina and anterior neural fold homeobox (RAX), sine oculis homeobox homolog 6 (SIX6), LIM homeobox 2 (LHX2), early NR markers (Ceh-10 homeodomain containing homolog [CHX10], achaete-scute complex homolog 1 [MASH1], mouse atonal homolog 5 [MATH5], neurogenic differentiation 1 [NEUROD1]), and some retinal cell fate markers (brain-specific homeobox/POU domain transcription factor 3B [BRN3B], prospero homeobox 1 [PROX1], and recoverin). The cells in the subretinal grafts matured to predominantly recoverin [+] phenotype by 3 months and survived in a xenogenic environment without immunosuppression as long as the blood-retinal barrier was not breached by the transplantation procedure. The epiretinal grafts survived but did not express markers of mature retinal cells. Retinal integration into the retinal ganglion cell (RGC) layer and the inner nuclear layer (INL) was efficient from the epiretinal but not subretinal grafts. The subretinal grafts showed limited ability to structurally integrate into the host retina and only in cases when NR was damaged during grafting. Only limited synaptogenesis and no tumorigenicity was observed in grafts. CONCLUSIONS: Our studies show that (i) immunosuppression is not mandatory to xenogenic graft survival in the retina, (ii) the subretinal but not the epiretinal niche can promote maturation of hESC-RPCs to photoreceptors, and (iii) the hESC-RPCs from epiretinal but not subretinal grafts can efficiently integrate into the RGC layer and INL. The latter could be of value for long-lasting neuroprotection of retina in some degenerative conditions and glaucoma. Overall, our results provide new insights into the technical aspects associated with cell-based therapy in the retina.


Assuntos
Células-Tronco Embrionárias/citologia , Células Fotorreceptoras/citologia , Retina/transplante , Neurônios Retinianos/citologia , Animais , Biomarcadores/análise , Proteínas de Transporte/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Humanos , Imunocompetência , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Retina/citologia , Retina/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Transplante Heterólogo
3.
J Surg Res ; 170(2): e253-61, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21816427

RESUMO

OBJECTIVE: The derivation of hepatocytes from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report the generation of hepatocyte-like cells derived from hES cells. METHODS: Hepatic endoderm cells were generated by adding activin A for 5 d- to 1-d-old embryoid bodies formed from hES cells. The hepatic endoderm cells were cocultured with mitomycin treated 3T3-J2 feeder cells. RESULTS: After co-culture with mitomycin treated 3T3-J2 feeder cells, these hepatic endodermal cells yielded hepatocyte-like cell colonies, which possessed the proliferation potential to be cultured for an extended period of more than 30 d. With extensive expansion, they co-expressed the hepatic marker AFP and albumin, indicating that they were hepatocyte-like cells. CONCLUSIONS: We report the generation of proliferative hepatocyte-like cells from hES cells. These hES cell derived hepatic cells can effectively be used as in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Células Estromais/citologia , Células 3T3 , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Divisão Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Corpos Embrioides/fisiologia , Endoderma/citologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Mitomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Células Estromais/efeitos dos fármacos
4.
Mol Cell Biol ; 27(9): 3499-510, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17339341

RESUMO

Transcriptional insulators are specialized cis-acting elements that protect promoters from inappropriate activation by distal enhancers. The H19 imprinting control region (ICR) functions as a CTCF-dependent, methylation-sensitive transcriptional insulator. We analyzed several insertional mutations and demonstrate that the ICR can function as a methylation-regulated maternal chromosome-specific insulator in novel chromosomal contexts. We used chromosome conformation capture and chromatin immunoprecipitation assays to investigate the configuration of cis-acting elements at these several insertion sites. By comparing maternal and paternal organizations on wild-type and mutant chromosomes, we hoped to identify mechanisms for ICR insulator function. We found that promoter and enhancer elements invariably associate to form DNA loop domains at transcriptionally active loci. Conversely, active insulators always prevent these promoter-enhancer interactions. Instead, the ICR insulator forms novel loop domains by associating with the blocked promoters and enhancers. We propose that these associations are fundamental to insulator function.


Assuntos
Cromossomos de Mamíferos/genética , Elementos Isolantes/genética , Animais , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Fígado/embriologia , Fígado/metabolismo , Camundongos , Mães , Células Musculares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas/genética , Proteínas Repressoras/genética , alfa-Fetoproteínas/genética
6.
Mol Cell Biol ; 24(9): 3588-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15082756

RESUMO

Igf2 and H19 are coordinately regulated imprinted genes physically linked on the distal end of mouse chromosome 7. Genetic analyses demonstrate that the differentially methylated region (DMR) upstream of the H19 gene is necessary for three distinct functions: transcriptional insulation of the maternal Igf2 allele, transcriptional silencing of paternal H19 allele, and marking of the parental origin of the two chromosomes. To test the sufficiency of the DMR for the third function, we inserted DMR at two heterologous positions in the genome, downstream of H19 and at the alpha-fetoprotein locus on chromosome 5. Our results demonstrate that the DMR alone is sufficient to act as a mark of parental origin. Moreover, this activity is not dependent on germ line differences in DMR methylation. Thus, the DMR can mark its parental origin by a mechanism independent of its own DNA methylation.


Assuntos
Cromossomos/metabolismo , Metilação de DNA , Impressão Genômica , Proteínas/genética , RNA não Traduzido/genética , Animais , Cromossomos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Humanos , Masculino , Camundongos , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Longo não Codificante
7.
Cell Death Differ ; 24(6): 1017-1028, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28362428

RESUMO

p53 functions to induce cellular senescence, which is incompatible with self-renewal of pluripotent stem cells such as induced pluripotent stem cells (iPSC) and embryonic stem cells (ESC). However, p53 also has essential roles in these cells through DNA damage repair for maintaining genomic integrity and high sensitivity to apoptosis for eliminating severely damaged cells. We hypothesized that Δ133p53, a physiological inhibitory p53 isoform, is involved in the balanced regulation of self-renewing capacity, DNA damage repair and apoptosis. We examined 12 lines of human iPSC and their original fibroblasts, as well as three ESC lines, for endogenous protein levels of Δ133p53 and full-length p53 (FL-p53), and mRNA levels of various p53 target genes. While FL-p53 levels in iPSC and ESC widely ranged from below to above those in the fibroblasts, all iPSC and ESC lines expressed elevated levels of Δ133p53. The p53-inducible genes that mediate cellular senescence (p21WAF1, miR-34a, PAI-1 and IGFBP7), but not those for apoptosis (BAX and PUMA) and DNA damage repair (p53R2), were downregulated in iPSC and ESC. Consistent with these endogenous expression profiles, overexpression of Δ133p53 in human fibroblasts preferentially repressed the p53-inducible senescence mediators and significantly enhanced their reprogramming to iPSC. The iPSC lines derived from Δ133p53-overexpressing fibroblasts formed well-differentiated, benign teratomas in immunodeficient mice and had fewer numbers of somatic mutations than an iPSC derived from p53-knocked-down fibroblasts, suggesting that Δ133p53 overexpression is non- or less oncogenic and mutagenic than total inhibition of p53 activities. Overexpressed Δ133p53 prevented FL-p53 from binding to the regulatory regions of p21WAF1 and miR-34a promoters, providing a mechanistic basis for its dominant-negative inhibition of a subset of p53 target genes. This study supports the hypothesis that upregulation of Δ133p53 is an endogenous mechanism that facilitates human somatic cells to become self-renewing pluripotent stem cells with maintained apoptotic and DNA repair activities.


Assuntos
Desdiferenciação Celular , Fibroblastos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Aminoácidos , Animais , Linhagem Celular , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Isoformas de Proteínas , Deleção de Sequência , Proteína Supressora de Tumor p53/genética
8.
Int J Biochem Cell Biol ; 38(7): 1063-75, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16469522

RESUMO

The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.


Assuntos
Técnicas de Cocultura/métodos , Embrião de Mamíferos/citologia , Células-Tronco/citologia , Animais , Antígenos Heterófilos/análise , Antígenos Heterófilos/imunologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/análise , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Proteínas Recombinantes/química , Células-Tronco/efeitos dos fármacos
9.
Stem Cell Res ; 17(1): 122-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27286574

RESUMO

Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Fator 3 de Transcrição de Octâmero/metabolismo , Imagem com Lapso de Tempo , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Software
10.
Neuromuscul Disord ; 13(3): 252-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609507

RESUMO

Desmin myopathy is a familial or sporadic disorder characterized by the presence of desmin mutations that cause skeletal muscle weakness associated with cardiac conduction block, arrhythmia and heart failure. Distinctive histopathologic features include intracytoplasmic accumulation of desmin-reactive deposits and electron-dense granular aggregates in skeletal and cardiac muscle cells. We describe two families with features of adult-onset slowly progressive skeletal myopathy without cardiomyopathy. N342D point mutation was present in the desmin helical rod domain in patients of family 1, and I451M mutation was found in the non-helical tail domain in patients of family 2. Of interest, the same I451M mutation has previously been reported in patients with cardiomyopathy and no signs of skeletal myopathy. Some carriers of the I451M mutation did not develop any disease, suggesting incomplete penetrance. Expression studies demonstrated inability of the N342D mutant desmin to form cellular filamentous network, confirming the pathogenic role of this mutation, but the network was not affected by the tail-domain I451M mutation. Progressive skeletal myopathy is a rare phenotypic variant of desmin myopathy allelic to the more frequent cardio-skeletal form.


Assuntos
Desmina/genética , Doenças Musculares/genética , Mutação Puntual , Alanina/genética , Animais , Carcinoma/metabolismo , Linhagem Celular , Cisteína/genética , Análise Mutacional de DNA , Desmina/metabolismo , Feminino , Imunofluorescência/métodos , Glicina/genética , Humanos , Masculino , Metionina/genética , Camundongos , Dados de Sequência Molecular , Doenças Musculares/etiologia , Doenças Musculares/patologia , Mioblastos/metabolismo , Linhagem , Fenótipo , Transfecção/métodos
11.
J Neurol ; 251(2): 143-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14991347

RESUMO

Desminopathy is a familial or sporadic cardiac and skeletal muscular dystrophy associated with mutations in desmin. We have previously characterized a de novo desmin R406W mutation in a patient of European origin with early onset muscle weakness in the lower extremities and atrioventricular conduction block requiring a permanent pacemaker. The disease relentlessly progressed resulting in severe incapacity within 5 years after onset. We have now identified three other patients with early onset rapidly progressive cardiac and skeletal myopathy caused by this same desmin R406W mutation. The mutation was present in each studied patient, but not in their parents or other unaffected family members, indicating that the mutation in all four cases was generated de novo. The patients' mutation-carrying chromosomes showed no similarity, suggesting that the R406W mutation has occurred independently. These observations strongly confirm that the de novo R406W desmin mutation is the genetic basis for early-onset cardiac and skeletal myopathy in patients with sporadic disease and indicate that desmin position 406 is a hot spot for spontaneous mutations. The high pathogenic potential of this mutation can be explained by its location in the highly conserved YRKLLEGEE motif at the C-terminal end of the 2B helix that has a critical role in the process of desmin filament assembly.


Assuntos
Cardiomiopatias/genética , Desmina/genética , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Mutação/genética , Miocárdio/patologia , Adolescente , Adulto , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Sequência de Bases/genética , Cardiomiopatias/fisiopatologia , Sequência Conservada , Progressão da Doença , Europa (Continente) , Feminino , Bloqueio Cardíaco/genética , Bloqueio Cardíaco/fisiopatologia , Humanos , Masculino , Modelos Moleculares , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Doenças Musculares/fisiopatologia , Linhagem , Estrutura Secundária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa