Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 246(1): 239-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22435559

RESUMO

The inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex is the master regulator of the NF-κB signaling pathway. The activation of the IKK complex is a tightly regulated, highly stimulus-specific, and target-specific event that is essential for the plethora of functions attributed to NF-κB. More recently, NF-κB-independent roles of IKK members have brought increased complexity to its biological function. This review highlights some of the major advances in the studies of the process of IKK activation and the biological roles of IKK family members, with a focus on NF-κB-independent functions. Understanding these complex processes is essential for targeting IKK for therapeutics.


Assuntos
Quinase I-kappa B/metabolismo , Animais , Ativação Enzimática , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Quinase I-kappa B/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Stem Cells ; 29(7): 1158-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21544903

RESUMO

By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia
3.
Mol Ther Nucleic Acids ; 1: e19, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23344000

RESUMO

Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs) in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa