Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 30(6): 885-897, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32660935

RESUMO

RNA-seq is widely used for studying gene expression, but commonly used sequencing platforms produce short reads that only span up to two exon junctions per read. This makes it difficult to accurately determine the composition and phasing of exons within transcripts. Although long-read sequencing improves this issue, it is not amenable to precise quantitation, which limits its utility for differential expression studies. We used long-read isoform sequencing combined with a novel analysis approach to compare alternative splicing of large, repetitive structural genes in muscles. Analysis of muscle structural genes that produce medium (Nrap: 5 kb), large (Neb: 22 kb), and very large (Ttn: 106 kb) transcripts in cardiac muscle, and fast and slow skeletal muscles identified unannotated exons for each of these ubiquitous muscle genes. This also identified differential exon usage and phasing for these genes between the different muscle types. By mapping the in-phase transcript structures to known annotations, we also identified and quantified previously unannotated transcripts. Results were confirmed by endpoint PCR and Sanger sequencing, which revealed muscle-type-specific differential expression of these novel transcripts. The improved transcript identification and quantification shown by our approach removes previous impediments to studies aimed at quantitative differential expression of ultralong transcripts.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro , Análise de Sequência de RNA , Transcriptoma , Processamento Alternativo , Biologia Computacional/métodos , Éxons , Perfilação da Expressão Gênica/métodos , Humanos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Sequências Repetitivas de Ácido Nucleico
2.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884867

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.


Assuntos
Distrofina/genética , Éxons , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Animais , Animais Geneticamente Modificados , Dependovirus/genética , Modelos Animais de Doenças , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Feminino , Deleção de Genes , Masculino , Fibras Musculares Esqueléticas/patologia , Técnicas de Transferência Nuclear , Oligonucleotídeos Antissenso/genética , Sarcolema/metabolismo , Suínos , Porco Miniatura
3.
J Pathol ; 248(3): 339-351, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883742

RESUMO

Exon skipping is a promising genetic therapeutic strategy for restoring dystrophin expression in the treatment of Duchenne muscular dystrophy (DMD). The potential for newly synthesized dystrophin to trigger an immune response in DMD patients, however, is not well established. We have evaluated the effect of chronic phosphorodiamidate morpholino oligomer (PMO) treatment on skeletal muscle pathology and asked whether sustained dystrophin expression elicits a dystrophin-specific autoimmune response. Here, two independent cohorts of dystrophic mdx mice were treated chronically with either 800 mg/kg/month PMO for 6 months (n = 8) or 100 mg/kg/week PMO for 12 weeks (n = 11). We found that significant muscle inflammation persisted after exon skipping in skeletal muscle. Evaluation of humoral responses showed serum-circulating antibodies directed against de novo dystrophin in a subset of mice, as assessed both by Western blotting and immunofluorescent staining; however, no dystrophin-specific antibodies were observed in the control saline-treated mdx cohorts (n = 8) or in aged (12-month-old) mdx mice with expanded 'revertant' dystrophin-expressing fibers. Reactive antibodies recognized both full-length and truncated exon-skipped dystrophin isoforms in mouse skeletal muscle. We found more antigen-specific T-cell cytokine responses (e.g. IFN-g, IL-2) in dystrophin antibody-positive mice than in dystrophin antibody-negative mice. We also found expression of major histocompatibility complex class I on some of the dystrophin-expressing fibers along with CD8+ and perforin-positive T cells in the vicinity, suggesting an activation of cell-mediated damage had occurred in the muscle. Evaluation of complement membrane attack complex (MAC) deposition on the muscle fibers further revealed lower MAC deposition on muscle fibers of dystrophin antibody-negative mice than on those of dystrophin antibody-positive mice. Our results indicate that de novo dystrophin expression after exon skipping can trigger both cell-mediated and humoral immune responses in mdx mice. Our data highlights the need to further investigate the autoimmune response and its long-term consequences after exon-skipping therapy. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Distrofina/farmacologia , Éxons/efeitos dos fármacos , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Modelos Animais de Doenças , Distrofina/genética , Éxons/genética , Terapia Genética/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética
4.
Hum Mol Genet ; 25(1): 130-45, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26566673

RESUMO

Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits.


Assuntos
Modelos Animais de Doenças , Patrimônio Genético , Distrofia Muscular Animal/genética , Animais , Peso Corporal , Distrofina/genética , Ecocardiografia , Feminino , Força da Mão , Testes de Função Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Contração Muscular , Músculos/patologia , Distrofia Muscular Animal/patologia , Miofibrilas/patologia , Miosite/genética , Miosite/patologia , Tamanho do Órgão , Fenótipo
5.
Hum Mol Genet ; 23(18): 4745-57, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760765

RESUMO

While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.


Assuntos
Adesões Focais/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Miogenina/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
6.
Hum Mol Genet ; 23(12): 3180-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24452336

RESUMO

Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics.


Assuntos
Marcadores Genéticos , Xenoenxertos/fisiologia , Músculo Esquelético/transplante , Distrofia Muscular Facioescapuloumeral/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia
7.
Hum Mol Genet ; 22(14): 2852-69, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23535822

RESUMO

Mutations in lamin A/C result in a range of tissue-specific disorders collectively called laminopathies. Of these, Emery-Dreifuss and Limb-Girdle muscular dystrophy 1B mainly affect striated muscle. A useful model for understanding both laminopathies and lamin A/C function is the Lmna(-/-) mouse. We found that skeletal muscle growth and muscle satellite (stem) cell proliferation were both reduced in Lmna(-/-) mice. Lamins A and C associate with lamina-associated polypeptide 2 alpha (Lap2α) and the retinoblastoma gene product, pRb, to regulate cell cycle exit. We found Lap2α to be upregulated in Lmna(-/-) myoblasts (MBs). To specifically test the contribution of elevated Lap2α to the phenotype of Lmna(-/-) mice, we generated Lmna(-/-)Lap2α(-/-) mice. Lifespan and body mass were increased in Lmna(-/-)Lap2α(-/-) mice compared with Lmna(-/-). Importantly, the satellite cell proliferation defect was rescued, resulting in improved myogenesis. Lmna(-/-) MBs also exhibited increased levels of Smad2/3, which were abnormally distributed in the cell and failed to respond to TGFß1 stimulation as in control cells. However, using SIS3 to inhibit signaling via Smad3 reduced cell death and augmented MB fusion. Together, our results show that perturbed Lap2α/pRb and Smad2/3 signaling are important regulatory pathways mediating defective muscle growth in Lmna(-/-) mice, and that inhibition of either pathway alone or in combination can ameliorate this deleterious phenotype.


Assuntos
Proteínas de Ligação a DNA/deficiência , Lamina Tipo A/deficiência , Proteínas de Membrana/deficiência , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular de Emery-Dreifuss/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Humanos , Lamina Tipo A/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
8.
Development ; 138(17): 3639-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828092

RESUMO

Skeletal muscle tissue provides mechanical force for locomotion of all vertebrate animals. It is prone to damage from acute physical trauma and physiological stress. To cope with this, it possesses a tremendous capacity for rapid and effective repair that is widely held to be accomplished by the satellite cells lying between the muscle fiber plasmalemma and the basement membrane. Cell transplantation and lineage-tracing studies have demonstrated that Pax7-expressing (Pax7(+)) satellite cells can repair damaged muscle tissue repeatedly after several bouts of acute injury. These findings provided evidence that Pax7(+) cells are muscle stem cells. However, stem cells from a variety of other origins are also reported to contribute to myofibers upon engraftment into muscles, questioning whether satellite cells are the only stem cell source for muscle regeneration. Here, we have engineered genetic ablation of Pax7(+) cells to test whether there is any significant contribution to muscle regeneration after acute injury from cells other than this source. We find that such elimination of Pax7(+) cells completely blocks regenerative myogenesis either following injury to the tibialis anterior (TA) muscle or after transplantation of extensor digitorum longus (EDL) muscles into nude mice. As Pax7 is specifically expressed in satellite cells, we conclude that they are essential for acute injury-induced muscle regeneration. It remains to be established whether there is any significant role for stem cells of other origins. The implications of our results for muscle stem cell-based therapy are discussed.


Assuntos
Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Bungarotoxinas/farmacologia , Cardiotoxinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Toxina Diftérica/farmacologia , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Mutantes , Camundongos Nus , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Satélites de Músculo Esquelético/fisiologia , Tamoxifeno/farmacologia
9.
Nat Med ; 12(2): 175-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16444267

RESUMO

For the majority of Duchenne muscular dystrophy (DMD) mutations, antisense oligonucleotide (AON)-mediated exon skipping has the potential to restore a functional protein. Here we show that weekly intravenous injections of morpholino phosphorodiamidate (morpholino) AONs induce expression of functional levels of dystrophin in body-wide skeletal muscles of the dystrophic mdx mouse, with resulting improvement in muscle function. Although the level of dystrophin expression achieved varies considerably between muscles, antisense therapy may provide a realistic hope for the treatment of a majority of individuals with DMD.


Assuntos
Distrofina/genética , Distrofia Muscular Animal/terapia , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Animais , Sequência de Bases , Esquema de Medicação , Distrofina/metabolismo , Regulação da Expressão Gênica , Terapia Genética , Humanos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligodesoxirribonucleotídeos Antissenso/genética
10.
Cell Death Discov ; 9(1): 224, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402716

RESUMO

Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.

11.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034785

RESUMO

Lack of dystrophin is the genetic basis for the Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2- mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2- mdx muscles is associated with enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports excessive accumulation of fibroadipogenic progenitors (FAPs). Unexpectedly, the extent of damage and degeneration of juvenile D2- mdx muscle is reduced in adults and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance myogenesis in the adult D2- mdx muscle, reaching levels comparable to the milder (B10- mdx ) mouse model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with the juvenile D2- mdx FAPs reduced their fusion efficacy and in vivo glucocorticoid treatment of juvenile D2 mouse improved muscle regeneration. Our findings indicate that aberrant stromal cell response contributes to poor myogenesis and greater muscle degeneration in dystrophic juvenile D2- mdx muscles and reversal of this reduces pathology in adult D2- mdx mouse muscle, identifying these as therapeutic targets to treat dystrophic DMD muscles.

12.
Exp Cell Res ; 317(14): 1979-93, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21635888

RESUMO

Research into muscle atrophy and hypertrophy is hampered by limitations of the available experimental models. Interpretation of in vivo experiments is confounded by the complexity of the environment while in vitro models are subject to the marked disparities between cultured myotubes and the mature myofibres of living tissues. Here we develop a method (PhAct) based on ex vivo maintenance of the isolated myofibre as a model of disuse atrophy, using standard microscopy equipment and widely available analysis software, to measure f-actin content per myofibre and per nucleus over two weeks of ex vivo maintenance. We characterize the 35% per week atrophy of the isolated myofibre in terms of early changes in gene expression and investigate the effects on loss of muscle mass of modulatory agents, including Myostatin and Follistatin. By tracing the incorporation of a nucleotide analogue we show that the observed atrophy is not associated with loss or replacement of myonuclei. Such a completely controlled investigation can be conducted with the myofibres of a single muscle. With this novel method we can distinguish those features and mechanisms of atrophy and hypertrophy that are intrinsic to the muscle fibre from those that include activities of other tissues and systemic agents.


Assuntos
Actinas/análise , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Software , Actinas/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Curr Opin Neurol ; 24(5): 415-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21892079

RESUMO

PURPOSE OF REVIEW: As the first genetic disease for which the culpable gene was identified by positional cloning, Duchenne muscular dystrophy has served as a paradigm for therapeutic approaches to neuromuscular disease, in which role it has proved especially testing. The large mass and broad distribution of the target tissue, skeletal muscle, have stretched the patience and ingenuity of those seeking therapeutic delivery of the largest known gene. The most promising recent advances are summarized in this article. RECENT FINDINGS: The main obstacle to genetic therapies has been the development of vectors able to efficiently deliver large, potentially therapeutic, genetic constructs to the large and widely dispersed mass of body musculature. Recombinant viral vectors that efficiently transduce muscle are unable to carry the full-length construct. Myogenic cells that are able both to carry full-length genes and to repair muscles are technically challenging to produce in sufficient quantity. A recent promising approach is the use of agents that obviate the mutation. SUMMARY: Although genetic and cell-mediated approaches are currently showing genuine promise in preclinical and clinical trials, there remains considerable interest in the development of agents that ameliorate the downstream pathology. One general challenge is the three-way tension between the interests of patients, regulators, and the biotechnology industry.


Assuntos
Terapia Genética/tendências , Vetores Genéticos/uso terapêutico , Distrofia Muscular de Duchenne/terapia , Reparo Gênico Alvo-Dirigido , Previsões , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Distrofia Muscular de Duchenne/genética , Células-Tronco
14.
J Cell Biol ; 174(2): 245-53, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16847102

RESUMO

Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.


Assuntos
Ciclo Celular , Lisofosfolipídeos/metabolismo , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Esfingomielinas/metabolismo , Esfingosina/análogos & derivados , Animais , Membrana Celular/metabolismo , Proliferação de Células , DNA/biossíntese , Lisofosfolipídeos/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Regeneração , Esfingosina/biossíntese , Esfingosina/metabolismo
15.
Nat Med ; 9(8): 1009-14, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12847521

RESUMO

As a target for gene therapy, Duchenne muscular dystrophy (DMD) presents many obstacles but also an unparalleled prospect for correction by alternative splicing. The majority of mutations in the dystrophin gene occur in the region encoding the spectrin-like central rod domain, which is largely dispensable. Thus, splicing around mutations can generate a shortened but in-frame transcript, permitting translation of a partially functional dystrophin protein. We have tested this idea in vivo in the mdx dystrophic mouse (carrying a mutation in exon 23 of the dystrophin gene) by combining a potent transfection protocol with a 2-O-methylated phosphorothioated antisense oligoribonucleotide (2OMeAO) designed to promote skipping of the mutated exon*. The treated mice show persistent production of dystrophin at normal levels in large numbers of muscle fibers and show functional improvement of the treated muscle. Repeated administration enhances dystrophin expression without eliciting immune responses. Our data establishes the realistic practicality of an approach that is applicable, in principle, to a majority of cases of severe dystrophinopathy.


Assuntos
Distrofina/genética , Éxons , Terapia Genética/métodos , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Mutação , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/metabolismo , Splicing de RNA
16.
J Neuromuscul Dis ; 8(s2): S257-S269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511511

RESUMO

Careful quantitative analysis of histological preparations of muscle samples is crucial to accurate investigation of myopathies in man and of interpretation of data from animals subjected to experimental or potentially therapeutic treatments. Protocols for measuring cell numbers are subject to problems arising from biases associated with preparative and analytical techniques. Prominent among these is the effect of polarized structure of skeletal muscle on sampling bias. It is also common in this tissue to collect data as ratios to convenient reference dominators, the fundamental bases of which are ill-defined, or unrecognized or not accurately assessable. Use of such 'floating' denominators raises a barrier to estimation of the absolute values that assume practical importance in medical research, where accurate comparison between different scenarios in different species is essential to the aim of translating preclinical research findings in animal models to clinical utility in Homo sapiens.This review identifies some of the underappreciated problems with current morphometric practice, some of which are exacerbated in skeletal muscle, and evaluates the extent of their intrusiveness into the of building an objective, accurate, picture of the structure of the muscle sample. It also contains recommendations for eliminating or at least minimizing these problems. Principal among these, would be the use of stereological procedures to avoid the substantial counting biases arising from inter-procedure differences in object size and section thickness.Attention is also drawn to the distortions of interpretation arising from use of undefined or inappropriate denominators.


Assuntos
Técnicas Histológicas/normas , Músculo Esquelético/anatomia & histologia , Animais , Humanos
17.
J Neuromuscul Dis ; 8(s2): S383-S402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569969

RESUMO

Recently, the Food and Drug Administration granted accelerated approvals for four exon skipping therapies -Eteplirsen, Golodirsen, Viltolarsen, and Casimersen -for Duchenne Muscular Dystrophy (DMD). However, these treatments have only demonstrated variable and largely sub-therapeutic levels of restored dystrophin protein in DMD patients, limiting their clinical impact. To better understand variable protein expression and the behavior of truncated dystrophin protein in vivo, we assessed turnover dynamics of restored dystrophin and dystrophin glycoprotein complex (DGC) proteins in mdx mice after exon skipping therapy, compared to those dynamics in wild type mice, using a targeted, highly-reproducible and sensitive, in vivo stable isotope labeling mass spectrometry approach in multiple muscle tissues. Through statistical modeling, we found that restored dystrophin protein exhibited altered stability and slower turnover in treated mdx muscle compared with that in wild type muscle (∼44 d vs. ∼24 d, respectively). Assessment of mRNA transcript stability (quantitative real-time PCR, droplet digital PCR) and dystrophin protein expression (capillary gel electrophoresis, immunofluorescence) support our dystrophin protein turnover measurements and modeling. Further, we assessed pathology-induced muscle fiber turnover through bromodeoxyuridine (BrdU) labeling to model dystrophin and DGC protein turnover in the context of persistent fiber degeneration. Our findings reveal sequestration of restored dystrophin protein after exon skipping therapy in mdx muscle leading to a significant extension of its half-life compared to the dynamics of full-length dystrophin in normal muscle. In contrast, DGC proteins show constant turnover attributable to myofiber degeneration and dysregulation of the extracellular matrix (ECM) in dystrophic muscle. Based on our results, we demonstrate the use of targeted mass spectrometry to evaluate the suitability and functionality of restored dystrophin isoforms in the context of disease and propose its use to optimize alternative gene correction strategies in development for DMD.


Assuntos
Distroglicanas/metabolismo , Distrofina/metabolismo , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Animais , Éxons , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo
18.
Aging Cell ; 20(7): e13411, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089289

RESUMO

Age-related loss of muscle mass and strength is widely attributed to limitation in the capacity of muscle resident satellite cells to perform their myogenic function. This idea contains two notions that have not been comprehensively evaluated by experiment. First, it entails the idea that we damage and lose substantial amounts of muscle in the course of our normal daily activities. Second, it suggests that mechanisms of muscle repair are in some way exhausted, thus limiting muscle regeneration. A third potential option is that the aged environment becomes inimical to the conduct of muscle regeneration. In the present study, we used our established model of human muscle xenografting to test whether muscle samples taken from cadavers, of a range of ages, maintained their myogenic potential after being transplanted into immunodeficient mice. We find no measurable difference in regeneration across the range of ages investigated up to 78 years of age. Moreover, we report that satellite cells maintained their myogenic capacity even when muscles were grafted 11 days postmortem in our model. We conclude that the loss of muscle mass with increasing age is not attributable to any intrinsic loss of myogenicity and is most likely a reflection of progressive and detrimental changes in the muscle microenvironment such as to disfavor the myogenic function of these cells.


Assuntos
Envelhecimento/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Neuromuscul Dis ; 8(s2): S369-S381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569970

RESUMO

BACKGROUND: Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is currently used in clinical development to treat Duchenne muscular dystrophy (DMD), with four exon-skipping drugs achieving regulatory approval. Exon skipping elicits a truncated, but semi-functional dystrophin protein, similar to the truncated dystrophin expressed in patients with Becker Muscular dystrophy (BMD) where the disease phenotype is less severe than DMD. Despite promising results in both dystrophic animal models and DMD boys, restoration of dystrophin by exon skipping is highly variable, leading to contradictory functional outcomes in clinical trials. OBJECTIVE: To develop optimal PMO dosing protocols that result in increased dystrophin and improved outcome measures in preclinical models of DMD. METHODS: Tested effectiveness of multiple chronic, high dose PMO regimens using biochemical, histological, molecular, and imaging techniques in mdx mice. RESULTS: A chronic, monthly regimen of high dose PMO increased dystrophin rescue in mdx mice and improved specific force in the extensor digitorum longus (EDL) muscle. However, monthly high dose PMO administration still results in variable dystrophin expression localized throughout various muscles. CONCLUSIONS: High dose monthly PMO administration restores dystrophin expression and increases muscle force; however, the variability of dystrophin expression at both the inter-and intramuscular level remains. Additional strategies to optimize PMO uptake including increased dosing frequencies or combination treatments with other yet-to-be-defined therapies may be necessary to achieve uniform dystrophin restoration and increases in muscle function.


Assuntos
Distrofina/efeitos dos fármacos , Morfolinos/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Modelos Animais de Doenças , Éxons , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos mdx
20.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213706

RESUMO

Duchenne muscular dystrophy (DMD) is a chronic muscle disease characterized by poor myogenesis and replacement of muscle by extracellular matrix. Despite the shared genetic basis, severity of these deficits varies among patients. One source of these variations is the genetic modifier that leads to increased TGF-ß activity. While anti-TGF-ß therapies are being developed to target muscle fibrosis, their effect on the myogenic deficit is underexplored. Our analysis of in vivo myogenesis in mild (C57BL/10ScSn-mdx/J and C57BL/6J-mdxΔ52) and severe DBA/2J-mdx (D2-mdx) dystrophic models reveals no defects in developmental myogenesis in these mice. However, muscle damage at the onset of disease pathology, or by experimental injury, drives up TGF-ß activity in the severe, but not in the mild, dystrophic models. Increased TGF-ß activity is accompanied by increased accumulation of fibroadipogenic progenitors (FAPs) leading to fibro-calcification of muscle, together with failure of regenerative myogenesis. Inhibition of TGF-ß signaling reduces muscle degeneration by blocking FAP accumulation without rescuing regenerative myogenesis. These findings provide in vivo evidence of early-stage deficit in regenerative myogenesis in D2-mdx mice and implicates TGF-ß as a major component of a pathogenic positive feedback loop in this model, identifying this feedback loop as a therapeutic target.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/fisiologia , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa