RESUMO
BACKGROUND: SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS: We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS: The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.
Assuntos
Bivalves , Análise de Sequência de RNA , Fluxo de Trabalho , Animais , Bivalves/genética , Análise de Sequência de RNA/métodos , Software , Genoma Mitocondrial/genética , RNA/genética , RNA Mitocondrial/genéticaRESUMO
Several functional classes of short noncoding RNAs are involved in manifold regulatory processes in eukaryotes, including, among the best characterized, miRNAs. One of the most intriguing regulatory networks in the eukaryotic cell is the mito-nuclear crosstalk: recently, miRNA-like elements of mitochondrial origin, called smithRNAs, were detected in a bivalve species, Ruditapes philippinarum. These RNA molecules originate in the organelle but were shown in vivo to regulate nuclear genes. Since miRNA genes evolve easily de novo with respect to protein-coding genes, in the present work we estimate the probability with which a newly arisen smithRNA finds a suitable target in the nuclear transcriptome. Simulations with transcriptomes of 12 bivalve species suggest that this probability is high and not species specific: one in a hundred million (1 × 10-8) if five mismatches between the smithRNA and the 3' mRNA are allowed, yet many more are allowed in animals. We propose that novel smithRNAs may easily evolve as exaptation of the pre-existing mitochondrial RNAs. In turn, the ability of evolving novel smithRNAs may have played a pivotal role in mito-nuclear interactions during animal evolution, including the intriguing possibility of acting as speciation trigger.
Assuntos
MicroRNAs , Animais , Interferência de RNA , MicroRNAs/genética , Transcriptoma , RNA Mensageiro/genética , Genes Mitocondriais , Redes Reguladoras de GenesRESUMO
The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.
Assuntos
Núcleo Celular , Mitocôndrias , Mitocôndrias/metabolismo , Núcleo Celular/metabolismo , RNA/metabolismo , RNA/genética , Animais , Transporte de RNA , Células Eucarióticas/metabolismo , Eucariotos/metabolismo , Eucariotos/genética , Eucariotos/fisiologia , Transdução de SinaisRESUMO
Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.
Assuntos
Bivalves/genética , Mitocôndrias/genética , Pequeno RNA não Traduzido/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Gônadas , Padrões de Herança/genética , Interferência de RNA/fisiologia , Pequeno RNA não Traduzido/fisiologia , Análise de Sequência de RNA/métodos , Transcrição Gênica/genéticaRESUMO
Reconstitution and renewal of tissues are key topics in developmental biology. In this brief work, we analyzed the wintry spent phase of the reproductive cycle in the Manila clam Ruditapes philippinarum (Bivalvia, Veneridae) in order to study the gonad rebuilding that in this species occurs at the beginning of the warmer months. We labeled VASA homolog protein-a germ cell marker-and compared the histological observations of the spent phase with those of the previously analyzed gametogenic phase. In R. philippinarum, during the reproductive season, most of the body mass is represented by sack-like structures (acini) full of developing gametes. In that period, VASA-stained cells are present at the basal pole of the gut epithelium, in the connective tissue, and around the acini. We here show that during the spent phase large portions of the intestine lack such cell type, except for some areas showing a few faintly VASA-stained cells. Cells with similar nuclear morphology are present among loosely organized cells of connective tissue, sometimes as single units, sometimes in small groups, rarely partially organized in primordial gonadic structures. These observations match the findings of RNA-targeting studies that during the spent phase identified the source of bivalve germ cells within the connective tissue in the form of quiescent units and add new information on the possible maintenance of VASA-stained, multipotent cells among the batiprismatic cells of the intestine during the whole life span of these bivalves.
Assuntos
Relógios Biológicos , Células Germinativas/citologia , Gônadas/citologia , Estações do Ano , Comportamento Sexual Animal , Animais , Bivalves , Linhagem CelularRESUMO
The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level.
Assuntos
Bivalves/genética , Mitocôndrias/genética , Ubiquitina-Proteína Ligases/genética , Animais , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.
Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Proteínas Mitocondriais/genética , Animais , Feminino , Humanos , Padrões de Herança , Masculino , Proteínas Mitocondriais/metabolismo , Modelos GenéticosRESUMO
Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of "primordial stem cells" among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.
Assuntos
Bivalves/metabolismo , RNA Helicases DEAD-box/genética , Células Germinativas/metabolismo , Sequência de Aminoácidos , Animais , Bivalves/citologia , RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Alinhamento de SequênciaRESUMO
In species with doubly uniparental inheritance (DUI), males are heteroplasmic for two sex-linked mitochondrial genomes (M- and F-mtDNA). While a role of M-mtDNA in male gametogenesis and sperm function is evident, there is an ongoing debate on whether it is transcribed or not in male soma. In this work we report a qPCR analysis in the DUI species Ruditapes philippinarum, showing that M-mtDNA is transcribed in somatic tissues. We observed a correlation between DNA copy numbers of the two analyzed genes, cytochrome b and a novel male-specific mitochondrial gene thought to be involved in DUI (orf21), and between their transcription levels. No correlation between a transcript and its DNA copy number was found, supporting the existence of complex regulatory mechanisms of mitochondrial transcription. We found the highest amount of mtDNA and mtRNA in gonads, likely due to the intense cell proliferation and high energy request for gametogenesis, while the observed variation among specimens is probably related to their different stages of gonad development. Finally, orf21 showed a highly variable transcription in advanced stages of gametogenesis. We hypothesize a differential storage of orf21 transcripts in spermatozoa, representing different paternal contributions to progeny, possibly leading to different developmental outcomes. A transcriptional activity does not necessarily imply the translation of M-mtDNA genes, and studies on mitochondrial proteins and their localization are needed to definitively assess the functioning of male-transmitted mitochondria in male soma. All that considered, the male soma of DUI species may represent an intriguing experimental model to study cytoplasmic genetic conflicts.
Assuntos
Bivalves/genética , Genoma Mitocondrial , Padrões de Herança , Transcrição Gênica , Animais , Análise por Conglomerados , DNA Mitocondrial , Dosagem de Genes , Perfilação da Expressão Gênica , Genes Mitocondriais , MasculinoRESUMO
In animals, three main RNA interference mechanisms have been described so far, which respectively maturate three types of small noncoding RNAs (sncRNAs): miRNAs, piRNAs, and endo-siRNAs. The diversification of these mechanisms is deeply linked with the evolution of the Argonaute gene superfamily since each type of sncRNA is typically loaded by a specific Argonaute homolog. Moreover, other protein families play pivotal roles in the maturation of sncRNAs, like the DICER ribonuclease family, whose DICER1 and DICER2 paralogs maturate respectively miRNAs and endo-siRNAs. Within Metazoa, the distribution of these families has been only studied in major groups, and there are very few data for clades like Lophotrochozoa. Thus, we here inferred the evolutionary history of the animal Argonaute and DICER families including 43 lophotrochozoan species. Phylogenetic analyses along with newly sequenced sncRNA libraries suggested that in all Trochozoa, the proteins related to the endo-siRNA pathway have been lost, a part of them in some phyla (i.e. Nemertea, Bryozoa, Entoprocta), while all of them in all the others. On the contrary, early diverging phyla, Platyhelminthes and Syndermata, showed a complete endo-siRNA pathway. On the other hand, miRNAs were revealed the most conserved and ubiquitous mechanism of the metazoan RNA interference machinery, confirming their pivotal role in animal cell regulation.
Assuntos
Evolução Molecular , MicroRNAs , Filogenia , Interferência de RNA , Ribonuclease III , Animais , Ribonuclease III/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Proteínas Argonautas/genética , Invertebrados/genéticaRESUMO
BACKGROUND: Bivalve mitochondrial genomes exhibit a wide array of uncommon features, like extensive gene rearrangements, large sizes, and unusual ways of inheritance. Species pertaining to the order Solemyida (subclass Opponobranchia) show many peculiar evolutionary adaptations, f.i. extensive symbiosis with chemoautotrophic bacteria. Despite Opponobranchia are central in bivalve phylogeny, being considered the sister group of all Autobranchia, a complete mitochondrial genome has not been sequenced yet. RESULTS: In this paper, we characterized the complete mitochondrial genome of the Atlantic awning clam Solemya velum: A-T content, gene arrangement and other features are more similar to putative ancestral mollusks than to other bivalves. Two supranumerary open reading frames are present in a large, otherwise unassigned, region, while the origin of replication could be located in a region upstream to the cox3 gene. CONCLUSIONS: We show that S. velum mitogenome retains most of the ancestral conchiferan features, which is unusual among bivalve mollusks, and we discuss main peculiarities of this first example of an organellar genome coming from the subclass Opponobranchia. Mitochondrial genomes of Solemya (for bivalves) and Haliotis (for gastropods) seem to retain the original condition of mollusks, as most probably exemplified by Katharina.
Assuntos
Genoma Mitocondrial/genética , Moluscos/genética , Filogenia , Animais , DNA Mitocondrial/genética , Ordem dos Genes/genética , GenômicaRESUMO
Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings.
Assuntos
Bivalves/genética , DNA Mitocondrial/genética , Regulação da Expressão Gênica no Desenvolvimento , Padrões de Herança , Processos de Determinação Sexual/genética , Animais , Feminino , Gônadas/citologia , Masculino , Mitocôndrias/genética , Mitocôndrias/fisiologia , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores Sexuais , Frutos do Mar , Transcriptoma/genética , UbiquitinaçãoRESUMO
Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.
Assuntos
Bivalves/embriologia , Bivalves/genética , Genes Mitocondriais , Animais , DNA Mitocondrial/genética , Feminino , Masculino , Mitocôndrias/genética , Mitocôndrias/fisiologia , Óvulo/citologia , Processos de Determinação Sexual/genética , Razão de Masculinidade , Espermatozoides/citologia , Transcriptoma , UbiquitinaçãoRESUMO
Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.
Assuntos
Bivalves/genética , DNA Mitocondrial/genética , Animais , Bivalves/citologia , Bivalves/fisiologia , Herança Extracromossômica , Feminino , Células Germinativas/metabolismo , Masculino , Mitocôndrias/genéticaRESUMO
In most metazoans mitochondria are inherited maternally. However, in some bivalve molluscs, two mitochondrial lineages are present: one transmitted through females (F-type), the other through males (M-type). This unique system is called Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI species, M-type mitochondria have to invade the germ line of male embryos during development, otherwise sperm would transmit F-type mtDNA and DUI would fail. The mechanisms by which sperm mitochondria enter the germ line are still unknown. To address this question, we traced the movement of spermatozoon mitochondria (M-type) in embryos of the DUI species Ruditapes philippinarum by fertilizing eggs with sperm stained with the mitochondrial-specific vital dye MitoTracker Green. As in Mytilus DUI species, in R. philippinarum the distribution of sperm mitochondria follows two different patterns: an aggregated one in which these organelles locate near the first cleavage furrow, and a dispersed one in which sperm mitochondria are scattered. The presence of the two mitochondrial patterns in these taxa, together with their absence in species with Strictly Maternal Inheritance (SMI), confirms that their occurrence is related to DUI. Moreover, a Real-Time qPCR analysis showed that neither M-type nor F-type mitochondria undergo replication boosts in the earliest embryo development. This is the first study on sex-linked mtDNA copy number carried out by qPCR analysis on embryos of a DUI species and the first time the segregation patterns of sperm mitochondria are described in a DUI system other than Mytilus.
Assuntos
Bivalves/embriologia , Embrião não Mamífero , Impressão Genômica , Mitocôndrias/fisiologia , Animais , Bivalves/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Mito-nuclear phylogenetic discordance in Bivalvia is well known. In particular, the monophyly of Amarsipobranchia (Heterodonta + Pteriomorphia), retrieved from mitochondrial markers, contrasts with the monophyly of Heteroconchia (Heterodonta + Palaeoheterodonta), retrieved from nuclear markers. However, since oxidative phosphorylation nuclear markers support the Amarsipobranchia hypothesis instead of the Heteroconchia one, interacting subunits of the mitochondrial complexes ought to share the same phylogenetic signal notwithstanding the genomic source, which is different from the signal obtained from other nuclear markers. This may be a clue of coevolution between nuclear and mitochondrial genes. In this work we inferred the phylogenetic signal from mitochondrial and nuclear oxidative phosphorylation markers exploiting different phylogenetic approaches and added two more datasets for comparison: genes of the glycolytic pathway and genes related to the biogenesis of regulative small noncoding RNAs. All trees inferred from mitochondrial and nuclear subunits of the mitochondrial complexes support the monophyly of Amarsipobranchia, regardless of the phylogenetic pipeline. However, not every single marker agrees with this topology: this is clearly visible in nuclear subunits that do not directly interact with the mitochondrial counterparts. Overall, our data support the hypothesis of a coevolution between nuclear and mitochondrial genes for the oxidative phosphorylation. Moreover, we suggest a relationship between mitochondrial topology and different nucleotide composition between clades, which could be associated to the highly variable gene arrangement in Bivalvia.
Assuntos
Bivalves , Caricaceae , Animais , Artefatos , Bivalves/genética , Caricaceae/genética , DNA Mitocondrial/genética , Ordem dos Genes , Genes Mitocondriais , FilogeniaRESUMO
The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
Assuntos
Bivalves , DNA Mitocondrial , Animais , Feminino , Masculino , DNA Mitocondrial/genética , RNA-Seq , Bivalves/genética , Mitocôndrias/genética , Evolução MolecularRESUMO
BACKGROUND: Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS: Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS: The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria.
Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Padrões de Herança , Mytilidae/genética , Animais , Sequência de Bases , Ciclo-Oxigenase 2/genética , Feminino , Masculino , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência de DNARESUMO
The Order Phasmatodea (stick and leaf insects) includes many well-known species of cryptic phytophagous insects. In this work, we sequenced the almost complete mitochondrial genomes of two stick insect species of the genus Bacillus. Phasmatodea pertain to the Polyneoptera, and represent one of the major clades of heterometabolous insects. Orthopteroid insect lineages arose through rapid evolutionary radiation events, which likely blurred the phylogenetic reconstructions obtained so far; we therefore performed a phylogenetic analysis to resolve and date all major splits of orthopteroid phylogeny, including the relationships between Phasmatodea and other polyneopterans. We explored several molecular models, with special reference to data partitioning, to correctly detect any phylogenetic signal lying in rough data. Phylogenetic Informativeness analysis showed that the maximum resolving power on the orthopteroid mtDNA dataset is expected for the Upper Cretaceous, about 80millionyears ago (Mya), but at least 70% of the maximum informativeness is also expected for the 150-200 Mya timespan, which makes mtDNA a suitable marker to study orthopteroid splits. A complete chronological calibration has also been computed following a Penalized Likelihood method. In summary, our analysis confirmed the monophyly of Phasmatodea, Dictyoptera and Orthoptera, and retrieved Mantophasmatodea as sister group of Phasmatodea. The origin of orthopteroid insects was also estimated to be in the Middle Triassic, while the order Phasmatodea seems to appear in the Upper Jurassic. The obtained results evidenced that mtDNA is a suitable marker to unravel the ancient splits leading to the orthopteroid orders, given a proper methodological approach.
Assuntos
Genoma de Inseto , Genoma Mitocondrial , Insetos/classificação , Filogenia , Animais , Teorema de Bayes , Hibridização Genômica Comparativa , DNA Mitocondrial/genética , Evolução Molecular , Insetos/genética , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNARESUMO
Mitochondrial chromosomes have diversified among eukaryotes and many different architectures and features are now acknowledged for this genome. Here we present the improved HERMES index, which can measure and quantify the amount of molecular change experienced by mitochondrial genomes. We test the improved approach with ten molecular phylogenetic studies based on complete mitochondrial genomes, representing six bilaterian Phyla. In most cases, HERMES analysis spotted out clades or single species with peculiar molecular synapomorphies, allowing to identify phylogenetic and ecological patterns. The software presented herein handles linear, circular, and multi-chromosome genomes, thus widening the HERMES scope to the complete eukaryotic domain.