Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10657-10670, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795118

RESUMO

The addition of Et2O·BF3 or Me2S·BCl3 to the BNBN-cumulene-bridged Pt(II) A-frame complexes [(µ-1,1-BNBN(TMS)2)(µ-dmpm)2Pt2X2] (TMS = SiMe3, dmpm = CH2(PMe2)2, X = Br 1Br, I 1I) resulted in the oxidative addition of one B-F or B-Cl bond, respectively, to the internal BN bond of the bridging, iminoborane-like B-N≡B-N moiety, and coordination of one Pt(II) center to the resulting adjacent BF2 (complex 2Br-F) or BCl2 (complexes 2Br-Cl and 2I-Cl) moiety, respectively. X-ray crystallographic and multinuclear NMR-spectroscopic data show that the Pt→BF2 interaction in 2Br-F is very weak and merely electrostatic, while the Pt→BCl2 interaction in 2Br-Cl and 2I-Cl is a stronger donor-acceptor bond. In contrast, the reaction of Me2S·BBr3 with 1Br yielded a ca. 3:2 mixture of the analogous B-Br addition product to the iminoborane, 2Br-Br, and the product of a subsequent oxidative addition of one B-Br bond of the chelating BBr2 moiety to the adjacent platinum center, the mixed-valence boranediyl-bridged, Pt(II)-Pt(IV)-bromoboryl complex 3-Br5. The analogous reactions of Me2S·BI3 with 1Br and Me2S·BBr3 with 1I yielded complex product mixtures of Pt(II)-Pt(II)-borane (2Br-I and 2I-Br, respectively) and Pt(II)-Pt(IV)-boryl complexes (3-BrnI5-n, n = 1-3) analogous to 2X-Y and 3-Br5, respectively, the proportion of the latter increasing with the proportion of iodide in the precursor mixture. Both multinuclear NMR-spectroscopic and X-ray crystallographic data show evidence of complex and extensive inter- and intramolecular bromide-iodide exchanges between the soft, iodide-affine platinum centers and the harder, more bromide-affine boron centers. A clue to the mechanism of these halide exchanges is provided by the reactions of BBr2Ar (Ar = 2,4,6-Me3C6H2 (Mes), 2,3,5,6-Me4C6H (Dur)) with 1Br, which yielded the cationic Pt(II)-Pt(II)-borenium analogues of 2Br-Br, the complexes 4Br-Ar, generated by the sterics-induced displacement of the bromide substituent from the chelating Pt→BBrAr moiety, and displaying a rare metal→borenium donor-acceptor bond.

2.
Chem Sci ; 12(27): 9506-9515, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349926

RESUMO

The reactions of terminal acetylenes with doubly Lewis base-stabilised diborenes resulted in different outcomes depending on the nature of the ligands at boron and the conformation of the diborene (cyclic versus acyclic). N-heterocyclic carbene (NHC)-stabilised diborenes tended to undergo anti-selective hydroalkynylation at room temperature, whereas [2 + 2] cycloaddition was observed at higher temperatures, invariably followed by a C-N bond activation at one NHC ligand, leading to the ring-expansion of the initially formed BCBC ring and formation of novel boron-containing heterocycles. For phosphine-stabilised diborenes only [2 + 2] cycloaddition was observed, followed by a rearrangement of the resulting 1,2-dihydro-1,2-diborete to the corresponding 1,3-isomer, which amounts to complete scission of both the B[double bond, length as m-dash]B double and C[triple bond, length as m-dash]C triple bonds of the reactants. The elusive 1,2-isomer was finally trapped by using a cyclic phosphine-stabilised diborene, which prevented rearrangement to the 1,3-isomer. Extensive density functional theory (DFT) calculations provide a rationale for the selectivity observed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa