Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25868, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356498

RESUMO

The present research work aims to develop Bauhinia vahlii fibre epoxy composites with incorporation of different weight percentage (wt%) of kenaf fiber as secondary reinforcement to elevate the mechanical and wear properties of prepared composites (through hand layup method). Higher value of mechanical properties like tensile strength-114.85 MPa, flexural strength- 64.64 MPa, and hardness- 57.2 Hv are achieved for bauhina vahlii-epoxy composites. In case of hybrid composites, tensile strength-161.92 MPa; flexural strength- 93.28 MPa; and hardness- 76.0Hv for bauhinia vahlii/kenaf-epoxy composites at 10 wt% of fiber reinforcement. The design of experiment is developed by Taguchi L9 orthogonal array to optimize the experimental run with three control factors; sliding velocity, fiber wt%, and normal load. In order to assess the multiple responses, the fabricated composite is analysed by Grey-Taguchi method with optimal factor setting to improve the output responses i.e. specific wear rate, tensile strength, flexural strength, and hardness. The optimal parameters which highly affect the properties of composites are sliding velocity (2.5 m/s), fiber wt% (10 wt %), and normal load (15 N). In wear mechanism analysis of composites by scanning electron microscopy (SEM), it is demonstrated that the synergy of hybridization of bauhinia vahlii and kenaf fiber improved the mechanical and wear properties of composites.

2.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922169

RESUMO

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.

3.
ACS Omega ; 6(1): 17-27, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458455

RESUMO

Remarkable progress has been established in the field of nanoenergetic materials (mixture of nanoscale fuel and oxidizer) since the advent of nanotechnology. Combustion of nanoenergetic materials depends on many key factors like synthesis route, equivalence ratio, morphology of constituents, and arrangements and handling of materials. For tailoring and tuning of the combustion properties of nanoenergetics, sound knowledge of the reaction mechanism is needed; in this review article a schematic study on the reaction mechanism is presented. By employing various routes and strategies in synthesizing and nanoengineering of the fuel or/and oxidizer to realize a significant evolution from normal physical mixing of nanopowders to the formulation of core/shell nanostructures, the nanoenergetic materials achieved the best ever combustion properties in terms of combustion reactivity, ignition sensitivity, energy density, etc. Overall, in this article, a critical state-of-the-art review of the existing literatures has been conducted to feature the main developments in the molecular combustion modeling of melting, oxidation, and core-shell reaction/diffusion of nanoaluminum and the molecular modeling of combustion reactivity and ignition sensitivity of nanoenergetic materials.

4.
ACS Omega ; 4(5): 8512-8521, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459941

RESUMO

We report a simple device that generates synchronized mechanical and electrical pressure waves for carrying out bacterial transformation. The mechanical pressure waves are produced by igniting a confined nanoenergetic composite material that provides ultrahigh pressure. Further, this device has an arrangement through which a synchronized electric field (of a time-varying nature) is initiated at a delay of ≈85 µs at the full width half-maxima point of the pressure pulse. The pressure waves so generated are incident to a thin aluminum-polydimethylsiloxane membrane that partitions the ignition chamber from the column of the mixture containing bacterial cells (Escherichia coli BL21) and 4 kb transforming DNA. A combination of mechanical and electrical pressure pulse created through the above arrangement ensures that the transforming DNA transports across the cell membrane into the cell, leading to a transformation event. This unique device has been successfully operated for efficient gene (∼4 kb) transfer into cells. The transformation efficacy of this device is found comparable to the other standard methods and protocols for carrying out the transformation.

5.
ACS Appl Mater Interfaces ; 5(24): 13364-74, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24283714

RESUMO

In this work, we demonstrate the development of high-performance nanothermite composites derived from super-reactive CuO nanorods oxidizers fabricated by simple biogenic routes using Aloe vera plant extracts. Nanorods of various length scales have been realized via simple sonoemulsion and solid-state biosynthesis routes using Aloe vera gel as a green surfactant promoting the directional growth of CuO nanorods in both solid and emulsion phase. The biosynthesized CuO nanorods (oxidizers)/fuel (nanoaluminum) composites ignited vigorously with abundant gas generation, developing high heat of reaction of 1.66 kJ g(-1) and very high pressurization rate of around 1.09 MPa µs(-1) and peak pressure of 65.4 MPa when blasted inside a constant volume pressure cell with a charge density of 0.2 g cm(-3). The pressurization rates so obtained are four times higher with twice the peak pressure in comparison to such nanothermites formulated via other available state of the art wet-chemical techniques, which reflects the catalytic role of Aloe vera surface functional groups (A. vera-sfg) enhancing the reactivity of CuO oxidizers with excess gas release rate during exothermic reaction with nanoaluminum. Through this work, Aloe vera gel has for the first time been identified as a novel biotemplate for green synthesis of nanorod structures of metal oxides, and we have also studied the utility of A. vera-sfg in the creation of super-reactive CuO oxidizers producing excellent heat of reaction and dynamic pressure characteristics as demanded in propellants, explosives, and pyrotechnics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa