RESUMO
BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.
Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , CaminhadaRESUMO
BACKGROUND: Numerous sensing techniques have been investigated in an effort to monitor the main parameters influencing the residual limb/prosthesis interface, fundamental to the optimum design of prosthetic socket solutions. Sensing integration within sockets is notoriously complex and can cause user discomfort. A personalised prosthetic liner with embedded sensors could offer a solution. However, to allow for a functional and comfortable instrumented liner, highly customised designs are needed. The aim of this paper is to presents a novel approach to manufacture fully personalised liners using scanned three-dimensional image data of the patient's residual limb, combined with designs that allow for sensor integration. To demonstrate the feasibility of the proposed approach, a personalised liner with embedded temperature and humidity sensors was realised and tested on a transtibial amputee, presented here as a case study. METHODS: The residual limb of a below knee amputee was first scanned and a three-dimensional digital image created. The output was used to produce a personalised prosthesis. The liner was manufactured using a cryogenic Computer Numeric Control (CNC) machining approach. This method enables fast, direct and precise manufacture of soft elastomer products. Twelve Hygrochron Data Loggers, able to measure both temperature and humidity, were embedded in specific liner locations, ensuring direct sensor-skin contact. The sensor locations were machined directly into the liner, during the manufacturing process. The sensors outputs were assessed on the below amputee who took part in the study, during resting (50 min) and walking activities (30 min). To better describe the relative thermal properties of new liner, the same tests were repeated with the amputee wearing his existing liner. Quantitative comparisons of the thermal properties of the new liner solution with that currently used in clinical practice are, therefore, reported. RESULTS: The liner machining process took approximately 4 h. Fifteen minutes after donning the prosthesis, the skin temperature reached a plateau. Physical activity rapidly increased residuum skin temperatures, while cessation of activity caused a moderate decrease. Humidity increased throughout the observation period. In addition, the new liner showed better thermal properties with respect to the current liner solution (4% reduction in skin temperature). CONCLUSIONS: This work describes a personalised liner solution, with embedded temperature and humidity sensors, developed through an innovative approach. This new method allows for a range of sensors to be smoothly embedded into a liner, which is capable of measuring changes in intra-socket microclimate conditions, resulting in the design of advanced socket solutions personalised specifically for individual requirements. In future, this method will not only provide a personalised liner but will also enable dynamic assessment of how a residual limb behaves within the socket during daily activities.
Assuntos
Monitorização Fisiológica/instrumentação , Próteses e Implantes , Calibragem , Estudos de Viabilidade , Humanos , Umidade , Medicina de Precisão , Temperatura , Caminhada/fisiologiaRESUMO
BACKGROUND: Among the different factors affecting socket comfort, the pressure applied on residual limb tissues is a crucial parameter for the success or failure of any prosthetic device. However, only a few incomplete data are available on people with transfemoral amputation, in this regard. This work aims at filling this gap in the literature. METHODS: Ten people with transfemoral amputation wearing 3 different socket designs were recruited in this study: 2 ischial containment sockets featured by proximal trim lines that contain the ischial tuberosity and ramus and greater trochanter, 2 subischial sockets with proximal trim lines under the ischium level, and 6 quadrilateral sockets with proximal trim lines that contain the greater trochanter and create a horizontal seat for the ischial tuberosity. The pressure values at the anterior, lateral, posterior, and medial areas of the socket interface were recorded during 5 locomotion tasks (ie, horizontal, ascent, and descent walking, upstairs and downstairs) by using an F-Socket System (Tekscan Inc., Boston, MA). Gait segmentation was performed by exploiting plantar pressure, which was acquired by an additional sensor under the foot. Mean and standard deviation of minimum and maximum values were calculated for each interface area, locomotion task, and socket design. The mean pressure patterns during different locomotion tasks were reported, as well. RESULTS: Considering all subjects irrespective of socket design, the mean pressure range resulted 45.3 (posterior)-106.7 (posterior) kPa in horizontal walking; 48.3 (posterior)-113.8 (posterior) kPa in ascent walking; 50.8 (posterior)-105.7 (posterior) kPa in descent walking; 47.9 (posterior)-102.9 (lateral) kPa during upstairs; and 41.8 (posterior)-84.5 (anterior) kPa during downstairs. Qualitative differences in socket designs have been found. CONCLUSIONS: These data allow for a comprehensive analysis of pressures acting at the tissue-socket interface in people with transfemoral amputation, thus offering essential information for the design of novel solutions or to improve existing ones, in this field.
Assuntos
Cotos de Amputação , Membros Artificiais , Humanos , Desenho de Prótese , Amputação Cirúrgica , Fêmur/cirurgiaRESUMO
[This corrects the article DOI: 10.3389/frobt.2023.1075634.].
RESUMO
This work explores the recent research conducted towards the development of novel classes of devices in wearable and implantable medical applications allowed by the introduction of the soft robotics approach. In the medical field, the need for materials with mechanical properties similar to biological tissues is one of the first considerations that arises to improve comfort and safety in the physical interaction with the human body. Thus, soft robotic devices are expected to be able of accomplishing tasks no traditional rigid systems can do. In this paper, we describe future perspectives and possible routes to address scientific and clinical issues still hampering the accomplishment of ideal solutions in clinical practice.
RESUMO
In bioinspired soft robotics, very few studies have focused on fluidic transmissions and there is an urgent need for translating fluidic concepts into realizable fluidic components to be applied in different fields. Nature has often offered an inspiring reference to design new efficient devices. Inspired by the working principle of a marine worm, the sipunculid species Phascolosoma stephensoni (Sipunculidae, Annelida), a soft linear fluidic actuator is here presented. The natural hydrostatic skeleton combined with muscle activity enables these organisms to protrude a part of their body to explore the surrounding. Looking at the hydrostatic skeleton and protrusion mechanism of sipunculids, our solution is based on a twofold fluidic component, exploiting the advantages of both pneumatic and hydraulic actuations and providing a novel fluidic transmission mechanism. The inflation of a soft pneumatic chamber is associated with the stretch of an inner hydraulic chamber due to the incompressibility of the liquid. Actuator stretch and forces have been characterized to determine system performance. In addition, an analytical model has been derived to relate the stretch ability to the inlet pressure. Three different sizes of prototypes were tested to evaluate the suitability of the proposed design for miniaturization. The proposed actuator features a strain equal to 40-50% of its initial length-depending on size-and output forces up to 18 N in the largest prototypes. The proposed bioinspired actuator expands the design of fluidic actuators and can pave the way for new approaches in soft robotics with potential application in the medical field.
Assuntos
Sistema Musculoesquelético , Robótica , Desenho de Equipamento , Esqueleto , MiniaturizaçãoRESUMO
The compliance and deformability of soft robotics allow human-machine interactions in a safe manner without the need of sophisticated control systems inherent in rigid-body robotic devices. However, these advantages introduce controllability and predictability challenges. In this study, we propose a novel fluidic-driven variable stiffness revolute joint (VSRJ) based on hybrid soft-rigid approach to achieve adjustable compliance while addressing the abovementioned challenges. The VSRJ is composed of a silicone rubber cylinder as a pressure chamber and two identical rigid links. The soft cylinder is positioned in a fully closed compartment created by the assembly of the two rigid links, thus constraining its expansion when pressure is applied. By applying pressure, the stiffness of the joint increases accordingly for the following reasons: (1) increasing the friction force between the cylinder and the compartment walls and (2) creating a locking mechanism through the expansion of the cylinder into space between rigid links in a "bump" formation. Experimental results show that the VSRJ can achieve up to 8-fold rotational stiffness enhancement from 0 to 5 bar input pressure within -30° to +30° rotation angle. The modular design of the rigid link allows the assembly of multiple VSRJs to build a variable stiffness structure in which each VSRJ has an independent stiffness and relative position. The VSRJ was characterized in terms of repeatability, torque, and stiffness. The experimental results were validated by finite element analysis. This approach can provide opportunities for the use of this new variable stiffness concept as an efficient alternative to traditional variable-stiffness linkages.
Assuntos
Robótica , Desenho de Equipamento , Humanos , Fenômenos Mecânicos , Elastômeros de Silicone , TorqueRESUMO
Changing the shape and the stiffness of a device in a dynamic and controlled way enables important advancements in the field of robotics and wearable robotics. Variable stiffness materials and technologies can be used to address this challenge. In particular, layer jamming actuation is a very promising technology, featured by high efficiency and low cost. In this article, a stiffness- and shape-changing device based on a novel mechanism including a multiple-chamber structure is proposed. It allows to effectively modulate the shape and stiffness of a device, by activating two jamming chambers while pressurizing/depressurizing one or more interposed inflatable chambers. Prototypes with a size of 45 × 270 mm2 and an average thickness ranging from 4.4 to 13 mm were developed and their ability to undergo a stiffness change over two orders of magnitude was demonstrated. The prototypes were also able to change their shape according to the position and inflation level of the interposed inflatable chambers, thus resulting in an overall deflection >10 mm. The possibility to wear the system as an orthotic brace was also demonstrated: this technology increased the patient comfort in static positions, yet keeping a supportive function when needed (e.g., in dynamic conditions). The device working principle highlighted in this article could also be exploited in other domains, for example, to build walking soft robots, prostheses, or grippers, as demonstrated through additional tests.
Assuntos
Robótica , Desenho de Equipamento , Humanos , CaminhadaRESUMO
This study constitutes the first attempt to systematically quantify residual limb volume fluctuations in transfemoral amputees. The study was carried out on 24 amputees to investigate variations due to prosthesis doffing, physical activity, and testing time. A proper experimental set-up was designed, including a 3D optical scanner to improve precision and acceptability by amputees. The first test session aimed at measuring residual limb volume at 7 time-points, with 10 min intervals, after prosthesis doffing. This allowed for evaluating the time required for volume stabilization after prosthesis removal, for each amputee. In subsequent sessions, 16 residual limb scans in a day for each amputee were captured to evaluate volume fluctuations due to prosthesis removal and physical activity, in two times per day (morning and afternoon). These measurements were repeated in three different days, a week apart from each other, for a total of 48 scans for each amputee. Volume fluctuations over time after prosthesis doffing showed a two-term decay exponential trend (R2 = 0.97), with the highest variation in the initial 10 min and an average stabilization time of 30 min. A statistically significant increase in residual limb volume following both prosthesis removal and physical activity was verified. No differences were observed between measures collected in the morning and in the afternoon.Clinical Trials.gov ID: NCT04709367.
Assuntos
Cotos de Amputação/anatomia & histologia , Amputação Cirúrgica , Amputados , Adulto , Idoso , Amputação Cirúrgica/reabilitação , Cotos de Amputação/patologia , Amputados/reabilitação , Análise de Variância , Extremidades/anatomia & histologia , Extremidades/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Qualidade de VidaRESUMO
Fluidic mechanisms have stimulated research and development in minimally invasive surgery instrumentations, because of their good performance in limited size and their force/torque generation with respect to other types of actuation systems. Fluidic solutions can be divided in two major classes: (i) elastic fluidic actuators and (ii) piston-cylinder actuators. Elastic fluidic actuators generate lower forces with smaller displacements; nevertheless, piston-cylinder solutions require seals, which can generate friction and require maintenance costs for a good reliability. The proposed solution is based on a hybrid soft-rigid actuation, which aims to overcome the limitations of both previous solutions while preserving the main advantages of the overall fluidic approach. This approach results in very compact, powerful, and low-cost actuators, which are highly customizable and adaptable to specific constraints, in medical applications but even beyond. This article proposes a novel design of hybrid soft-rigid actuators to be used as basic mechanical joints for enabling pitch and roll degrees of freedom for a miniature robotic arm. Forces up to 1.4 N and up to 2.77 N have been obtained for the above joints, respectively, and even better performance can be reached (up to 3 N) with further improvements, as demonstrated in this article.
RESUMO
In the prosthetics field, one of the most important bottlenecks is still the human-machine interface, namely the socket. Indeed, a large number of amputees still rejects prostheses or points out a low satisfaction level, due to a sub-optimal interaction between the socket and the residual limb tissues. The aim of this paper is to describe the main parameters (displacements, stress, volume fluctuations and temperature) affecting the stump-socket interface and reducing the comfort/stability of limb prostheses. In this review, a classification of the different socket types proposed in the literature is reported, together with an analysis of advantages and disadvantages of the different solutions, from multiple viewpoints. The paper then describes the technological solutions available to face an altered distribution of stresses on the residual limb tissues, volume fluctuations affecting the stump overtime and temperature variations affecting the residual tissues within the socket. The open challenges in this research field are highlighted and the possible future routes are discussed, towards the ambitious objective of achieving an advanced socket able to self-adapt in real-time to the complex interplay of factors affecting the stump, during both static and dynamic tasks.