Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuroimage ; 286: 120515, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38216105

RESUMO

Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions. For example, the duration of high-numerosity displays is perceived as longer than that of low-numerosity displays. Such interactions are often ascribed to a generalized magnitude system with shared neural responses across quantities. Anterior quantity responses are more closely linked to behavior. Here, we investigate whether common quantity representations hierarchically emerge by asking whether numerosity and timing maps become increasingly closely related in their overlap, response preferences, and topography. While the earliest quantity maps do not overlap, more superior maps overlap increasingly. In these overlapping areas, some intraparietal maps have consistently correlated numerosity and timing preferences, and some maps have consistent angles between the topographic progressions of numerosity and timing preferences. However, neither of these relationships increases hierarchically like the amount of overlap does. Therefore, responses to different quantities are initially derived separately, then progressively brought together, without generally becoming a common representation. Bringing together distinct responses to different quantities may underlie behavioral interactions and allow shared access to comparison and action planning systems.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Estimulação Luminosa , Imageamento por Ressonância Magnética , Córtex Cerebral
2.
Neuroimage ; 258: 119366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690255

RESUMO

Perception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing. Using 7T fMRI, we measured responses to white noise bursts of changing duration and rate. We analyzed these responses using neural response models describing different parametric relationships between event timing and neural response amplitude. This revealed auditory timing-tuned responses in the primary auditory cortex, and auditory association areas of the belt, parabelt and premotor cortex. While these areas also showed tonotopic tuning for auditory pitch, pitch and timing preferences were not consistently correlated. Auditory timing-tuned response functions differed between these areas, though without clear hierarchical integration of responses. The similarity of auditory and visual timing tuned responses, together with the lack of overlap between the areas showing these responses for each modality, suggests modality-specific responses to event timing are computed similarly but from different sensory inputs, and then transformed differently to suit the needs of each modality.


Assuntos
Córtex Auditivo , Música , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
3.
J Vis ; 17(3): 16, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355628

RESUMO

We habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g., object saliency, scanning heuristics). Here we investigated the extent to which enumeration eye movements are contingent upon the location of objects in an array, and whether fixation patterns vary with enumeration demands. Twenty adults enumerated random dot arrays twice: first to report the set cardinality and second to judge the perceived number of subsets. We manipulated the spatial location of dots by presenting arrays at 0°, 90°, 180°, and 270° orientations. Participants required a similar time to enumerate the set or the perceived number of subsets in the same array. Fixation patterns were systematically shifted in the direction of array rotation, and distributed across similar locations when the same array was shown on multiple occasions. We modeled fixation patterns and dot saliency using a simple filtering model and show participants judged groups of dots in close proximity (2°-2.5° visual angle) as distinct subsets. Modeling results are consistent with the suggestion that enumeration involves visual grouping mechanisms based on object saliency, and specific enumeration demands affect spatial distribution of fixations. Our findings highlight the importance of set computation, rather than object processing per se, for models of numerosity processing.


Assuntos
Movimentos Oculares/fisiologia , Fixação Ocular/fisiologia , Atenção/fisiologia , Feminino , Humanos , Masculino , Orientação/fisiologia , Fatores de Tempo , Adulto Jovem
4.
Neurosci Biobehav Rev ; 139: 104753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772633

RESUMO

Subitizing is the fast and accurate enumeration of small sets. Whether attention is necessary for subitizing remains controversial considering (1) subitizing is claimed to be "pre-attentive", and (2) existing experimental methods and results are inconsistent. To determine whether manipulations to attention demonstratively affect subitizing, the current study comprises a systematic review and meta-analysis. Results from fourteen studies (22 experiments, 35 comparisons) suggest that changes to attentional demands interferes with enumeration of small sets; leading to slower response times, lower accuracy, and poorer Weber acuity (p < .010; p < .001; p < .001; respectively)-notwithstanding a potential publication bias. A unifying framework is proposed to explain the role of attention in visual enumeration, with progressively greater attentional involvement from estimation to subitizing to counting. Our findings suggest attention is integral for subitizing and highlights the need to emphasise attentional mechanisms into neurocognitive models of numerosity processing. We also discuss the possible role of attention in numerical processing difficulties (e.g., dyscalculia).


Assuntos
Atenção , Reconhecimento Visual de Modelos , Atenção/fisiologia , Humanos , Matemática , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação/fisiologia
5.
Nat Commun ; 13(1): 3952, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804026

RESUMO

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. Tuned neural responses to visual event timing have been found in association cortices, in areas implicated in these processes. Here we ask how these timing-tuned responses are related to the responses of early visual cortex, which monotonically increase with event duration and frequency. Using 7-Tesla functional magnetic resonance imaging and neural model-based analyses, we find a gradual transition from monotonically increasing to timing-tuned neural responses beginning in the medial temporal area (MT/V5). Therefore, across successive stages of visual processing, timing-tuned response components gradually become dominant over inherent sensory response modulation by event timing. This additional timing-tuned response component is independent of retinotopic location. We propose that this hierarchical emergence of timing-tuned responses from sensory processing areas quantifies sensory event timing while abstracting temporal representations from spatial properties of their inputs.


Assuntos
Córtex Visual , Percepção Visual , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa , Sensação , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Percepção Visual/fisiologia
6.
Nat Commun ; 13(1): 1340, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292648

RESUMO

Human early visual cortex response amplitudes monotonically increase with numerosity (object number), regardless of object size and spacing. However, numerosity is typically considered a high-level visual or cognitive feature, while early visual responses follow image contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly with little effect of object size, spacing or shape. This would allow straightforward numerosity estimation from spatial frequency domain image representations. Using 7T fMRI, we show monotonic responses originate in primary visual cortex (V1) at the stimulus's retinotopic location. Responses here and in neural network models follow aggregate Fourier power more closely than numerosity. Truly numerosity tuned responses emerge after lateral occipital cortex and are independent of retinotopic location. We propose numerosity's straightforward perception and neural responses may result from the pervasive spatial frequency analyses of early visual processing.


Assuntos
Córtex Visual , Percepção Visual , Mapeamento Encefálico/métodos , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Occipital , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Percepção Visual/fisiologia
7.
Cognition ; 198: 104204, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014714

RESUMO

Brain regions involved in saccadic eye movements partially overlap with a frontoparietal network implicated in encoding numerosities. Eye movement patterns may plausibly reflect strategic scanning behaviours to resolve the open-ended task of efficiently enumerating visual arrays. If so, these patterns may help explain individual differences in enumeration acuity in terms of well-understood visual attention mechanisms. Most enumeration eye-tracking paradigms, however, do not allow for direct manipulation of eye movement behaviours to test these claims. In the current study we terminated trials after a specified number of saccades to systematically probe the time course of enumeration strategies. Fifteen adults (11 naïve, 4 informed) enumerated random dot arrays under three conditions: (1) a novel saccade-terminated design where arrays were visible until one, two or four saccades had occurred; (2) a duration-terminated design where arrays were shown for 250, 500 or 1000 ms; and (3) a response-terminated design where arrays were visible until a response. Participants gave more accurate responses when enumerating saccade-terminated trials despite taking a similar time as in the duration-terminated trials. When participants were informed how trials would terminate, their saccade onset latencies shifted to match task demands. Rotating saccade vectors to align with salient image locations accounted for variability in the orientation of saccade trajectories. These findings (1) show a combination of stimulus-derived visual processing and task-based strategic demands account for enumeration eye movements patterns, (2) validate a novel saccade-contingent trial termination procedure for studying sequences of enumeration eye movements, and (3) highlight the need to include analyses of spatial and temporal eye movement patterns into models of visual enumeration strategies.


Assuntos
Tecnologia de Rastreamento Ocular , Movimentos Sacádicos , Adulto , Movimentos Oculares , Humanos , Orientação , Tempo de Reação , Percepção Visual
8.
Curr Biol ; 30(8): 1424-1434.e6, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32142704

RESUMO

Accurately timing sub-second sensory events is crucial when perceiving our dynamic world. This ability allows complex human behaviors that require timing-dependent multisensory integration and action planning. Such behaviors include perception and performance of speech, music, driving, and many sports. How are responses to sensory event timing processed for multisensory integration and action planning? We measured responses to viewing systematically changing visual event timing using ultra-high-field fMRI. We analyzed these responses with neural population response models selective for event duration and frequency, following behavioral, computational, and macaque action planning results and comparisons to alternative models. We found systematic local changes in timing preferences (recently described in supplementary motor area) in an extensive network of topographic timing maps, mirroring sensory cortices and other quantity processing networks. These timing maps were partially left lateralized and widely spread, from occipital visual areas through parietal multisensory areas to frontal action planning areas. Responses to event duration and frequency were closely linked. As in sensory cortical maps, response precision varied systematically with timing preferences, and timing selectivity systematically varied between maps. Progressing from posterior to anterior maps, responses to multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These timing maps largely overlap with numerosity and visual field map networks. In both visual timing map and visual field map networks, selective responses and topographic map organization may facilitate hierarchical transformations by allowing neural populations to interact over minimal distances.


Assuntos
Córtex Cerebral/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Campos Visuais
9.
PLoS One ; 15(3): e0230559, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214366

RESUMO

The representation of number symbols is assumed to be unique, and not shared with other ordinal sequences. However, little research has examined if this is the case, or whether properties of symbols (such as spatial complexity) affect ordinal learning. Two studies were conducted to investigate if the property of spatial complexity affects learning ordinal sequences. In Study 1, 46 adults made a series of judgements about two novel symbol sets (Gibson and Sunúz). The goal was to find a novel symbol set that could be ordered by spatial complexity. In Study 2, 84 adults learned to order nine novel symbols (Sunúz) with a paired comparison task, judging which symbol was 'larger' (whereby the larger symbol became physically larger as feedback), and were then asked to rank the symbols. Participants were assigned to either a condition where there was a relationship between spatial complexity and symbol order, or a condition where there was a random relationship. Of interest was whether learning an ordered list of symbols would be facilitated by the spatial complexity of the novel symbols. Findings suggest spatial complexity affected learning ability, and that pairing spatial complexity with relational information can facilitate learning ordinal sequences. This suggests that the implicit cognitive representation of number may be a more general feature of ordinal lists, and not exclusive to number per se.


Assuntos
Aprendizagem , Adolescente , Adulto , Feminino , Humanos , Masculino , Reconhecimento Visual de Modelos , Tempo de Reação , Reconhecimento Psicológico , Simbolismo , Adulto Jovem
10.
Front Psychol ; 9: 1498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154754

RESUMO

We assessed the degree to which the variability in the time children took to solve single digit addition (SDA) problems longitudinally, predicted their ability to solve more complex mental addition problems. Beginning at 5 years, 164 children completed a 12-item SDA test on four occasions over 6 years. We also assessed their (1) digit span, visuospatial working memory, and non-verbal IQ, and (2) the speed with which they named single numbers and letters, as well the speed enumerating one to three dots as a measure of subitizing ability. Children completed a double-digit mental addition test at the end of the study. We conducted a latent profile analysis to determine if there were different SDA problem solving response time (PRT) variability patterns across the four test occasions, which yielded three distinct PRT variability patterns. In one pattern, labeled a typical acquisition pathway, mean PRTs were relatively low and PRT variability diminished over time. In a second pattern, label a delayed pathway, mean PRT and variability was high initially but diminished over time. In a third pattern, labeled a deficit pathway, mean PRT and variability remained relatively high throughout the study. We investigated the degree to which the three SDA PRT variability pathways were associated with (1) different cognitive ability measures, and (2) double-digit mental addition abilities. The deficit pathway differed from the typical and delayed pathway on the subitizing measure only, but not other measures; and the latter two pathways also differed from each other on the subitizing but not other measures. Double-digit mental addition problem solving success differed between each of the three pathways, and mean PRT variability differed between the typical and the delayed and deficit pathways. The latter two pathways did not differ from each other. The findings emphasize the value of examining individual differences in problem-solving PRT variability longitudinally as an index of math ability, and highlight the important of subitizing ability as a diagnostic index of math ability/difficulties.

11.
Front Psychol ; 8: 2263, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312096

RESUMO

Different math indices can be used to assess math potential at school entry. We evaluated whether standardized math achievement (TEMA-2 performance), core number abilities (dot enumeration, symbolic magnitude comparison), non-verbal intelligence (NVIQ) and visuo-spatial working memory (VSWM), in combination or separately, predicted mental addition problem solving speed over time. We assessed 267 children's TEMA-2, magnitude comparison, dot enumeration, and VSWM abilities at school entry (5 years) and NVIQ at 8 years. Mental addition problem solving speed was assessed at 6, 8, and 10 years. Longitudinal path analysis supported a model in which dot enumeration performance ability profiles and previous mental addition speed predicted future mental addition speed on all occasions, supporting a componential account of math ability. Standardized math achievement and NVIQ predicted mental addition speed at specific time points, while VSWM and symbolic magnitude comparison did not contribute unique variance to the model. The implications of using standardized math achievement and dot enumeration ability to index math learning potential at school entry are discussed.

12.
Front Psychol ; 6: 647, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029152

RESUMO

We use a latent difference score (LDS) model to examine changes in young children's number-line (NL) error signatures (errors marking numbers on a NL) over 18 months. A LDS model (1) overcomes some of the inference limitations of analytic models used in previous research, and in particular (2) provides a more reliable test of hypotheses about the meaning and significance of changes in NL error signatures over time and task. The NL error signatures of 217 6-year-olds' (on test occasion one) were assessed three times over 18 months, along with their math ability on two occasions. On the first occasion (T1) children completed a 0-100 NL task; on the second (T2) a 0-100 NL and a 0-1000 NL task; on the third (T3) occasion a 0-1000 NL task. On the third and fourth occasions (T3 and T4), children completed mental calculation tasks. Although NL error signatures changed over time, these were predictable from other NL task error signatures, and predicted calculation accuracy at T3, as well as changes in calculation between T3 and T4. Multiple indirect effects (change parameters) showed that associations between initial NL error signatures (0-100 NL) and later mental calculation ability were mediated by error signatures on the 0-1000 NL task. The pattern of findings from the LDS model highlight the value of identifying direct and indirect effects in characterizing changing relationships in cognitive representations over task and time. Substantively, they support the claim that children's NL error signatures generalize over task and time and thus can be used to predict math ability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa