Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
CA Cancer J Clin ; 74(3): 264-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174605

RESUMO

The last decade has seen rapid progress in the use of genomic tests, including gene panels, whole-exome sequencing, and whole-genome sequencing, in research and clinical cancer care. These advances have created expansive opportunities to characterize the molecular attributes of cancer, revealing a subset of cancer-associated aberrations called driver mutations. The identification of these driver mutations can unearth vulnerabilities of cancer cells to targeted therapeutics, which has led to the development and approval of novel diagnostics and personalized interventions in various malignancies. The applications of this modern approach, often referred to as precision oncology or precision cancer medicine, are already becoming a staple in cancer care and will expand exponentially over the coming years. Although genomic tests can lead to better outcomes by informing cancer risk, prognosis, and therapeutic selection, they remain underutilized in routine cancer care. A contributing factor is a lack of understanding of their clinical utility and the difficulty of results interpretation by the broad oncology community. Practical guidelines on how to interpret and integrate genomic information in the clinical setting, addressed to clinicians without expertise in cancer genomics, are currently limited. Building upon the genomic foundations of cancer and the concept of precision oncology, the authors have developed practical guidance to aid the interpretation of genomic test results that help inform clinical decision making for patients with cancer. They also discuss the challenges that prevent the wider implementation of precision oncology.


Assuntos
Testes Genéticos , Genômica , Neoplasias , Medicina de Precisão , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisão/métodos , Genômica/métodos , Testes Genéticos/métodos , Guias de Prática Clínica como Assunto , Biomarcadores Tumorais/genética , Mutação
2.
Lancet ; 404(10452): 527-539, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39096924

RESUMO

BACKGROUND: Patients with unfavourable subset cancer of unknown primary (CUP) have a poor prognosis when treated with standard platinum-based chemotherapy. Whether first-line treatment guided by comprehensive genomic profiling (CGP) can improve outcomes is unknown. The CUPISCO trial was designed to inform a molecularly guided treatment strategy to improve outcomes over standard platinum-based chemotherapy in patients with newly diagnosed, unfavourable, non-squamous CUP. The aim of the trial was to compare the efficacy and safety of molecularly guided therapy (MGT) versus standard platinum-based chemotherapy in these patients. This was to determine whether the inclusion of CGP in the initial diagnostic work-up leads to improved outcomes over the current standard of care. We herein report the primary analysis. METHODS: CUPISCO was a phase 2, prospective, randomised, open-label, active-controlled, multicentre trial done at 159 sites in 34 countries outside the USA. Patients with central eligibility review-confirmed disease (acceptable histologies included adenocarcinoma and poorly differentiated carcinoma) and an Eastern Cooperative Oncology Group performance status of 0 or 1, evaluated by CGP, who reached disease control after three cycles of standard first-line platinum-based chemotherapy were randomly assigned 3:1 via a block-stratified randomisation procedure to MGT versus chemotherapy continuation for at least three further cycles. The primary endpoint was investigator-assessed progression-free survival in the intention-to-treat population. The study is registered with ClinicalTrials.gov, NCT03498521, and follow-up is ongoing. FINDINGS: From July 10, 2018, to Dec 9, 2022, 636 (42%) of 1505 screened patients were enrolled. Median follow-up in the treatment period was 24·1 months (IQR 11·6-35·6). Of 438 patients who reached disease control after induction chemotherapy, 436 were randomly assigned: 326 (75%) to the MGT group and 110 (25%) to the chemotherapy group. Median progression-free survival in the intention-to-treat population was 6·1 months (95% CI 4·7-6·5) in the MGT group versus 4·4 months (4·1-5·6) in the chemotherapy group (hazard ratio 0·72 [95% CI 0·56-0·92]; p=0·0079). Related adverse event rates per 100-patient-years at risk were generally similar or lower with MGT versus chemotherapy. INTERPRETATION: In patients with previously untreated, unfavourable, non-squamous CUP who reached disease control after induction chemotherapy, CGP with subsequent MGTs resulted in longer progression-free survival than standard platinum-based chemotherapy. On the basis of these results, we recommend that CGP is performed at initial diagnosis in patients with unfavourable CUP. FUNDING: F Hoffmann-La Roche.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Primárias Desconhecidas , Humanos , Neoplasias Primárias Desconhecidas/tratamento farmacológico , Neoplasias Primárias Desconhecidas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Prospectivos , Adulto , Terapia de Alvo Molecular , Intervalo Livre de Progressão , Adenocarcinoma/tratamento farmacológico
3.
J Pathol ; 263(2): 257-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613194

RESUMO

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Lamina Tipo A , Mutação , Neurofibromina 2 , Inibidores de Proteínas Quinases , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacologia , Benzamidas/farmacologia , Pirimidinonas/farmacologia , Sirolimo/farmacologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias de Tecidos Moles/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinergismo Farmacológico , Indazóis
4.
Cancer Lett ; 584: 216650, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246222

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to late detection and limited treatment options. Some PDAC patients harbor alterations that qualify for targeted treatment strategies but develop acquired resistance, leading to treatment failure. We here report the ex vivo modeling of acquired drug resistance by creating a PDAC patient-derived tumor organoid (PDTO) model harboring a rare BRAF R506_K507ins VLR mutation resulting in a resistance to trametinib, a MEK inhibitor. Genomic and transcriptomic analyses revealed upregulated WNT signaling in resistant PDTO clones compared to treatment-naïve parental control cells. By combining genomic and transcriptomic analysis with a functional drug testing approach, we uncovered a de novo upregulation and circumventive reliance on WNT signaling in resistant PDTO clones. Ex vivo models such as PDTOs represent valuable tools for resistance modelling and offer the discovery of novel therapeutic approaches for patients in need where clinical diagnostic tools are currently at the limit.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Mutação , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Organoides/patologia
5.
iScience ; 27(6): 109707, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832018

RESUMO

In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters. This synovial cell map expanded the diversity of synovial cell types/states, detected synovial neutrophils, and broadened synovial endothelial cell classification. We revealed tissue-resident macrophage subsets with proposed matrix-sensing (FOLR2+COLEC12high) and iron-recycling (LYVE1+SLC40A1+) activities and identified fibroblast subsets with proposed functions in cartilage breakdown (SOD2highSAA1+SAA2+SDC4+) and extracellular matrix remodeling (SERPINE1+COL5A3+LOXL2+). Our study offers an efficient synovium dissociation method and a reference scRNA-seq resource, that advances the current understanding of synovial cell heterogeneity in inflammatory arthritis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa