Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 585(7823): 141-145, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641835

RESUMO

The transient receptor potential ion channel TRPA1 is expressed by primary afferent nerve fibres, in which it functions as a low-threshold sensor for structurally diverse electrophilic irritants, including small volatile environmental toxicants and endogenous algogenic lipids1. TRPA1 is also a 'receptor-operated' channel whose activation downstream of metabotropic receptors elicits inflammatory pain or itch, making it an attractive target for novel analgesic therapies2. However, the mechanisms by which TRPA1 recognizes and responds to electrophiles or cytoplasmic second messengers remain unknown. Here we use strutural studies and electrophysiology to show that electrophiles act through a two-step process in which modification of a highly reactive cysteine residue (C621) promotes reorientation of a cytoplasmic loop to enhance nucleophilicity and modification of a nearby cysteine (C665), thereby stabilizing the loop in an activating configuration. These actions modulate two restrictions controlling ion permeation, including widening of the selectivity filter to enhance calcium permeability and opening of a canonical gate at the cytoplasmic end of the pore. We propose a model to explain functional coupling between electrophile action and these control points. We also characterize a calcium-binding pocket that is highly conserved across TRP channel subtypes and accounts for all aspects of calcium-dependent TRPA1 regulation, including potentiation, desensitization and activation by metabotropic receptors. These findings provide a structural framework for understanding how a broad-spectrum irritant receptor is controlled by endogenous and exogenous agents that elicit or exacerbate pain and itch.


Assuntos
Cálcio/metabolismo , Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Cisteína/metabolismo , Condutividade Elétrica , Humanos , Iodoacetamida/farmacologia , Modelos Moleculares , Mutação , Oximas/farmacologia , Canal de Cátion TRPA1/genética
2.
Nature ; 520(7548): 511-7, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25855297

RESUMO

The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to ∼4 Å resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/ultraestrutura , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/ultraestrutura , Regulação Alostérica , Analgésicos , Repetição de Anquirina , Anti-Inflamatórios , Sítios de Ligação , Canais de Cálcio/metabolismo , Citosol/metabolismo , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/metabolismo
4.
Nat Chem Biol ; 8(1): 57-64, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22158416

RESUMO

Protein sulfenylation is a post-translational modification of emerging importance in higher eukaryotes. However, investigation of its diverse roles remains challenging, particularly within a native cellular environment. Herein we report the development and application of DYn-2, a new chemoselective probe for detecting sulfenylated proteins in human cells. These studies show that epidermal growth factor receptor-mediated signaling results in H(2)O(2) production and oxidation of downstream proteins. In addition, we demonstrate that DYn-2 has the ability to detect differences in sulfenylation rates within the cell, which are associated with differences in target protein localization. We also show that the direct modification of epidermal growth factor receptor by H(2)O(2) at a critical active site cysteine (Cys797) enhances its tyrosine kinase activity. Collectively, our findings reveal sulfenylation as a global signaling mechanism that is akin to phosphorylation and has regulatory implications for other receptor tyrosine kinases and irreversible inhibitors that target oxidant-sensitive cysteines in proteins.


Assuntos
Domínio Catalítico , Receptores ErbB/metabolismo , Peróxido de Hidrogênio/metabolismo , Enxofre/metabolismo , Linhagem Celular Tumoral , Humanos , Oxirredução , Transporte Proteico , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais
5.
Nat Commun ; 14(1): 2867, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208332

RESUMO

A drastic TRPA1 mutant (R919*) identified in CRAMPT syndrome patients has not been mechanistically characterized. Here, we show that the R919* mutant confers hyperactivity when co-expressed with wild type (WT) TRPA1. Using functional and biochemical assays, we reveal that the R919* mutant co-assembles with WT TRPA1 subunits into heteromeric channels in heterologous cells that are functional at the plasma membrane. The R919* mutant hyperactivates channels by enhancing agonist sensitivity and calcium permeability, which could account for the observed neuronal hypersensitivity-hyperexcitability symptoms. We postulate that R919* TRPA1 subunits contribute to heteromeric channel sensitization by altering pore architecture and lowering energetic barriers to channel activation contributed by the missing regions. Our results expand the physiological impact of nonsense mutations, reveal a genetically tractable mechanism for selective channel sensitization, uncover insights into the process of TRPA1 gating, and provide an impetus for genetic analysis of patients with CRAMPT or other stochastic pain syndromes.


Assuntos
Códon sem Sentido , Canais de Potencial de Receptor Transitório , Humanos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Cálcio/metabolismo
6.
Redox Biol ; 56: 102443, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058112

RESUMO

RAD51 is a critical recombinase that functions in concert with auxiliary mediator proteins to direct the homologous recombination (HR) DNA repair pathway. We show that Cys319 RAD51 possesses nucleophilic characteristics and is important for irradiation-induced RAD51 foci formation and resistance to inhibitors of poly (ADP-ribose) polymerase (PARP). We have previously identified that cysteine (Cys) oxidation of proteins can be important for activity and modulated via binding to peroxiredoxin 1 (PRDX1). PRDX1 reduces peroxides and coordinates the signaling actions of protein binding partners. Loss of PRDX1 inhibits irradiation-induced RAD51 foci formation and represses HR DNA repair. PRDX1-deficient human breast cancer cells and mouse embryonic fibroblasts display disrupted RAD51 foci formation and decreased HR, resulting in increased DNA damage and sensitization of cells to irradiation. Following irradiation cells deficient in PRDX1 had increased incorporation of the sulfenylation probe DAz-2 in RAD51 Cys319, a functionally-significant, thiol that PRDX1 is critical for maintaining in a reduced state. Molecular dynamics (MD) simulations of dT-DNA bound to a non-oxidized RAD51 protein showed tight binding throughout the simulation, while dT-DNA dissociated from an oxidized Cys319 RAD51 filament. These novel data establish RAD51 Cys319 as a functionally-significant site for the redox regulation of HR and cellular responses to IR.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Rad51 Recombinase , Difosfato de Adenosina/metabolismo , Animais , Cisteína/metabolismo , DNA/metabolismo , Reparo do DNA , Fibroblastos/metabolismo , Recombinação Homóloga , Humanos , Camundongos , Oxirredução , Peróxidos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribose
8.
Sci Rep ; 7: 45489, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374795

RESUMO

TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonstrates that W583 is part of the gate for Ca2+ permeation. The W583 mutants show increased cell death due to profoundly enhanced Ca2+ influx, resulting from altered channel function. A glycine residue above W583 might act as flexible linker to rearrange the tryptophan gate. Furthermore, we hypothesize functional crosstalk between the pore region and carboxy terminus, involved in Ca2+-calmodulin-mediated inactivation. This study proposes a unique channel gating mechanism and delivers detailed molecular insight into the Ca2+ permeation pathway that can be extrapolated to other Ca2+-selective channels.


Assuntos
Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Canais de Cátion TRPV/genética
9.
Cell Chem Biol ; 23(7): 837-848, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27427230

RESUMO

Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology.


Assuntos
Receptores ErbB/metabolismo , Proteínas Quinases/metabolismo , Afatinib , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
ACS Chem Biol ; 5(1): 47-62, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19957967

RESUMO

Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.


Assuntos
Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Humanos , Oxirredução
11.
Chem Biol ; 16(2): 217-25, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19230722

RESUMO

Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its environment via a redox relay system comprising the thiol peroxidase Gpx3 and transcription factor Yap1. In this signaling pathway, a central unresolved question is whether cysteine sulfenic acid modification of Gpx3 is required for Yap1 activation in cells. Here we report that cell-permeable chemical probes, which are selective for sulfenic acid, inhibit peroxide-dependent nuclear accumulation of Yap1, trap the Gpx3 sulfenic acid intermediate, and block formation of the Yap1-Gpx3 intermolecular disulfide directly in cells. In addition, we present electrostatic calculations that show cysteine oxidation is accompanied by significant changes in charge distribution, which might facilitate essential conformational rearrangements in Gpx3 during catalysis and intermolecular disulfide formation with Yap1.


Assuntos
Glutationa Peroxidase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Cicloexanonas/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Glutationa Peroxidase/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Conformação Proteica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Fatores de Transcrição/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa