Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216163

RESUMO

Perturbations of cholesterol metabolism have been linked to neurodegenerative diseases. Glia-neuron crosstalk is essential to achieve a tight regulation of brain cholesterol trafficking. Adequate cholesterol supply from glia via apolipoprotein E-containing lipoproteins ensures neuronal development and function. The lipolysis-stimulated lipoprotein receptor (LSR), plays an important role in brain cholesterol homeostasis. Aged heterozygote Lsr+/- mice show altered brain cholesterol distribution and increased susceptibility to amyloid stress. Since LSR expression is higher in astroglia as compared to neurons, we sought to determine if astroglial LSR deficiency could lead to cognitive defects similar to those of Alzheimer's disease (AD). Cre recombinase was activated in adult Glast-CreERT/lsrfl/fl mice by tamoxifen to induce astroglial Lsr deletion. Behavioral phenotyping of young and old astroglial Lsr KO animals revealed hyperactivity during the nocturnal period, deficits in olfactory function affecting social memory and causing possible apathy, as well as visual memory and short-term working memory problems, and deficits similar to those reported in neurodegenerative diseases, such as AD. Furthermore, GFAP staining revealed astroglial activation in the olfactory bulb. Therefore, astroglial LSR is important for working, spatial, and social memory related to sensory input, and represents a novel pathway for the study of brain aging and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Transtornos da Memória/metabolismo , Memória de Curto Prazo , Receptores de Lipoproteínas/metabolismo , Olfato , Animais , Colesterol/metabolismo , Transtornos da Memória/genética , Camundongos , Receptores de Lipoproteínas/genética
2.
Physiol Genomics ; 48(12): 928-935, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789735

RESUMO

Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes. Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism. A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis. Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Homeostase/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Receptores de Lipoproteínas/genética , Transcriptoma/genética , Animais , Regulação para Baixo/genética , Feminino , Heterozigoto , Insulina/genética , Lipídeos/genética , Camundongos , Obesidade/genética , Aumento de Peso/genética
3.
ACS Appl Mater Interfaces ; 15(14): 17507-17517, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995989

RESUMO

Deciphering the mechanism of Alzheimer's disease is a key element for designing an efficient therapeutic strategy. Molecular dynamics (MD) calculations, atomic force microscopy, and infrared spectroscopy were combined to investigate ß-amyloid (Aß1-42) peptide interactions with supported lipid bilayers (SLBs). The MD simulations showed that nascent Aß1-42 monomers remain anchored within a model phospholipid bilayer's hydrophobic core, which suggests their stability in their native environment. We tested this prediction experimentally by studying the behavior of Aß1-42 monomers and oligomers when interacting with SLBs. When Aß1-42 monomers and oligomers were self-assembled with a lipid bilayer and deposited as an SLB, they remain within the bilayers. Their presence in the bilayers induces destabilization of the model membranes. No specific interactions between Aß1-42 and the SLBs were detected when SLBs free of Aß1-42 were exposed to Aß1-42. This study suggests that Aß can remain in the membrane after cleavage by γ-secretase and cause severe damage to the membrane.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Bicamadas Lipídicas/química
4.
Biochem J ; 439(2): 185-93, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21954942

RESUMO

CUB domains are 110-residue protein motifs exhibiting a ß-sandwich fold and mediating protein-protein interactions in various extracellular proteins. Recent X-ray structural and mutagenesis studies have led to the identification of a particular CUB domain subset, cbCUB (Ca(2+)-binding CUB domain). Unlike other CUB domains, these harbour a homologous Ca(2+)-binding site that underlies a conserved binding site mediating ionic interaction between two of the three conserved acidic Ca(2+) ligands and a basic (lysine or arginine) residue of a protein ligand, similar to the interactions mediated by the low-density lipoprotein receptor family. cbCUB-mediated protein-ligand interactions usually involve multipoint attachment through several cbCUBs, resulting in high-affinity binding through avidity, despite the low affinity of individual interactions. The aim of the present review is to summarize our current knowledge about the structure and functions of cbCUBs, which represent the majority of the known CUB repertoire and are involved in a variety of major biological functions, including immunity and development, as well as in various cancer types. Examples discussed in the present review include a wide range of soluble and membrane-associated human proteins, as well as some archaeal and invertebrate proteins. The fact that these otherwise unrelated proteins share a common Ca(2+)-dependent ligand-binding ability suggests a mechanism inherited from very primitive ancestors. The information provided in the present review should stimulate further investigations on the crucial interactions mediated by cbCUB-containing proteins.


Assuntos
Motivos de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Sequência de Aminoácidos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
PLoS One ; 14(6): e0218812, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233547

RESUMO

The regulation of cholesterol, an essential brain lipid, ensures proper neuronal development and function, as demonstrated by links between perturbations of cholesterol metabolism and neurodegenerative diseases, including Alzheimer's disease. The central nervous system (CNS) acquires cholesterol via de novo synthesis, where glial cells provide cholesterol to neurons. Both lipoproteins and lipoprotein receptors are key elements in this intercellular transport, where the latter recognize, bind and endocytose cholesterol containing glia-produced lipoproteins. CNS lipoprotein receptors are like those in the periphery, among which include the ApoB, E binding lipolysis stimulated lipoprotein receptor (LSR). LSR is a multimeric protein complex that has multiple isoforms including α and α', which are seen as a doublet at 68 kDa, and ß at 56 kDa. While complete inactivation of murine lsr gene is embryonic lethal, studies on lsr +/- mice revealed altered brain cholesterol distribution and cognitive functions. In the present study, LSR profiling in different CNS regions revealed regiospecific expression of LSR at both RNA and protein levels. At the RNA level, the hippocampus, hypothalamus, cerebellum, and olfactory bulb, all showed high levels of total lsr compared to whole brain tissues, whereas at the protein level, only the hypothalamus, olfactory bulb, and retina showed the highest levels of total LSR. Interestingly, major regional changes in LSR expression were observed in aged mice which suggests changes in cholesterol homeostasis in specific structures in the aging brain. Immunocytostaining of primary cultures of mature murine neurons and glial cells isolated from different CNS regions showed that LSR is expressed in both neurons and glial cells. However, lsr RNA expression in the cerebellum was predominantly higher in glial cells, which was confirmed by the immunocytostaining profile of cerebellar neurons and glia. Based on this observation, we would propose that LSR in glial cells may play a key role in glia-neuron cross talk, particularly in the feedback control of cholesterol synthesis to avoid cholesterol overload in neurons and to maintain proper functioning of the brain throughout life.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Receptores de Lipoproteínas/metabolismo , Envelhecimento/genética , Animais , Encéfalo/anatomia & histologia , Colesterol/metabolismo , Homeostase , Humanos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lipoproteínas/deficiência , Receptores de Lipoproteínas/genética , Distribuição Tecidual , Transcriptoma
6.
Neurobiol Aging ; 54: 84-93, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347928

RESUMO

Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Encéfalo/citologia , Membrana Celular/fisiologia , Neurônios/citologia , Nootrópicos/uso terapêutico , Animais , Fator Neurotrófico Ciliar/fisiologia , Gorduras Insaturadas na Dieta , Ácidos Docosa-Hexaenoicos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Microdomínios da Membrana , Camundongos Endogâmicos C57BL , Receptor do Fator Neutrófico Ciliar/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
7.
Biochimie ; 130: 178-187, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27594339

RESUMO

Lipids are the fundamental structural components of biological membranes. For a long time considered as simple barriers segregating aqueous compartments, membranes are now viewed as dynamic interfaces providing a molecular environment favorable to the activity of membrane-associated proteins. Interestingly, variations in membrane lipid composition, whether quantitative or qualitative, play a crucial role in regulation of membrane protein functionalities. Indeed, a variety of alterations in brain lipid composition have been associated with the processes of normal and pathological aging. Although not establishing a direct cause-and-effect relationship between these complex modifications in cerebral membranes and the process of cognitive decline, evidence shows that alterations in membrane lipid composition affect important physicochemical properties notably impacting the lateral organization of membranes, and thus microdomains. It has been suggested that preservation of microdomain functionality may represent an effective strategy for preventing or decelerating neuronal dysfunction and cerebral vulnerability, processes that are both aggravated by aging. The working hypothesis developed in this review proposes that preservation of membrane organization, for example, through nutritional supplementation of docosahexaenoic acid, could prevent disturbances in and preserve effective cerebral function.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Encéfalo/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Modelos Biológicos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo
8.
PLoS One ; 9(7): e102991, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054229

RESUMO

BACKGROUND: Dyslipidemia associated with obesity often manifests as increased plasma LDL and triglyceride-rich lipoprotein levels suggesting changes in hepatic lipoprotein receptor status. Persistent organic pollutants have been recently postulated to contribute to the obesity etiology by increasing adipogenesis, but little information is available on their potential effect on hepatic lipoprotein metabolism. OBJECTIVE: The objective of this study was to investigate the effect of the common environmental pollutant, benzo[α]pyrene (B[α]P) on two lipoprotein receptors, the LDL-receptor and the lipolysis-stimulated lipoprotein receptor (LSR) as well as the ATP-binding cassette transporter A1 (ABCA1) using cell and animal models. RESULTS: LSR, LDL-receptor as well as ABCA1 protein levels were significantly decreased by 26-48% in Hepa1-6 cells incubated (<2 h) in the presence of B[α]P (≤1 µM). Real-time PCR analysis and lactacystin studies revealed that this effect was due primarily to increased proteasome, and not lysosomal-mediated degradation rather than decreased transcription. Furthermore, ligand blots revealed that lipoproteins exposed to 1 or 5 µM B[α]P displayed markedly decreased (42-86%) binding to LSR or LDL-receptor. B[α]P-treated (0.5 mg/kg/48 h, i.p. 15 days) C57BL/6J mice displayed higher weight gain, associated with significant increases in plasma cholesterol, triglycerides, and liver cholesterol content, and decreased hepatic LDL-receptor and ABCA1 levels. Furthermore, correlational analysis revealed that B[α]P abolished the positive association observed in control mice between the LSR and LDL-receptor. Interestingly, levels of other proteins involved in liver cholesterol metabolism, ATP-binding cassette transporter G1 and scavenger receptor-BI, were decreased, while those of acyl-CoA:cholesterol acyltransferase 1 and 2 were increased in B[α]P-treated mice. CONCLUSIONS: B[α]P demonstrates inhibitory action on LSR and LDL-R, as well as ABCA1, which we propose leads to modified lipid status in B[α]P-treated mice, thus providing new insight into mechanisms underlying the involvement of pollutants in the disruption of lipid homeostasis, potentially contributing to dyslipidemia associated with obesity.


Assuntos
Benzo(a)pireno/farmacologia , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores de LDL/metabolismo , Receptores de Lipoproteínas/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Técnicas In Vitro , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Prog Mol Biol Transl Sci ; 117: 511-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23663981

RESUMO

Microtubules are among the main constituents of the cytoskeleton. They are assembled from dimers of alpha- and beta-tubulin. This assembly occurs preferentially at organizing centers such as the centrosomes, catalyzed by multiprotein complexes of gamma-tubulin. At the beginning of mitosis, the amount of gamma-tubulin complexes at the centrosomes increases sharply, supporting the sudden formation of numerous spindle microtubules. Recent studies on the structure of gamma-tubulin complex proteins have advanced our understanding of the assembly process of gamma-tubulin complexes, and have pointed toward putative mechanisms of microtubule nucleation. Moreover, the discovery of novel proteins associated with gamma-tubulin complexes has illustrated the possibilities of how gamma-tubulin might be recruited and regulated at specific sites of microtubule organization. This chapter highlights recent developments in the field and discusses the potential of the gamma-tubulin complex as a pharmacological target, to control proliferation of cells.


Assuntos
Células/metabolismo , Doença , Complexos Multiproteicos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Tubulina (Proteína)/química
10.
Nat Struct Mol Biol ; 18(8): 915-9, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725292

RESUMO

Microtubule nucleation in all eukaryotes involves γ-tubulin small complexes (γTuSCs) that comprise two molecules of γ-tubulin bound to γ-tubulin complex proteins (GCPs) GCP2 and GCP3. In many eukaryotes, multiple γTuSCs associate with GCP4, GCP5 and GCP6 into large γ-tubulin ring complexes (γTuRCs). Recent cryo-EM studies indicate that a scaffold similar to γTuRCs is formed by lateral association of γTuSCs, with the C-terminal regions of GCP2 and GCP3 binding γ-tubulin molecules. However, the exact role of GCPs in microtubule nucleation remains unknown. Here we report the crystal structure of human GCP4 and show that its C-terminal domain binds directly to γ-tubulin. The human GCP4 structure is the prototype for all GCPs, as it can be precisely positioned within the γTuSC envelope, revealing the nature of protein-protein interactions and conformational changes regulating nucleation activity.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa