Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 53(13): 7432-7441, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132852

RESUMO

While microbial dechlorination of polychlorinated biphenyls (PCBs) has been observed in sediments over the last 3 decades, translation to the field has been difficult due to a lack of a clear understanding of the kinetic limitations. To address this issue, the present study used passive dosing/sampling to accurately measure the biological rate of dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) to 2,3,5-trichlorobiphenyl (PCB 23) by an organohalide-respiring bacterium, Dehalobium chlorocoercia (DF-1). The biological rates were measured over an environmentally relevant concentration range of 1-50 ng/L of freely dissolved concentrations with and without the presence of sediment in bench-scale microcosm studies. The rate of dechlorination was found to be linearly dependent on the freely dissolved concentration of PCB 61 both in sediment and in sediment-free microcosms. The observed rate of dechlorination in sediment microcosms could be predicted within a factor of 2 based on the kinetics measured in sediment-free microcosms. A threshold for dechlorination was not observed down to an aqueous concentration of about 1 ng/L PCB 61. We demonstrate that with the combination of an accurate measurement of the aqueous-phase dechlorination kinetics and an understanding of the site-specific partitioning characteristics, it is possible to predict PCB microbial dechlorination in sediments.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Biodegradação Ambiental , Cloro , Sedimentos Geológicos , Cinética
2.
Environ Sci Technol ; 53(5): 2626-2634, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698958

RESUMO

A combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m2 plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.5 cm by up to 52% and the aqueous concentrations of tri- to nonachlorobiphenyl PCB congeners by as much as 95%. Coplanar congeners decreased by up to 80% in sediment and were undetectable in the porewater. There was no significant decrease in PCB concentrations in non-bioamended plots with or without AC. All homologue groups decreased in bioamended sediment and porewater, indicating that both anaerobic dechlorination and aerobic degradation occurred concurrently. The titer of the bioamendments based on quantitative PCR of functional marker genes decreased but were still detectable after 409 days, whereas indigenous microbial diversity was not significantly different between sites, time points, or depths, indicating that bioaugmentation and the addition of activated carbon did not significantly alter total microbial diversity. In situ treatment of PCBs using an AC agglomerate as a delivery system for bioamendments is particularly well-suited for environmentally sensitive sites where there is a need to reduce exposure of the aquatic food web to sediment-bound PCBs with minimal disruption to the environment.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Carvão Vegetal , Sedimentos Geológicos , Projetos Piloto
3.
Biofouling ; 35(1): 50-58, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30786761

RESUMO

Removal of polychlorinated biphenyls (PCBs) from contaminated sediments is a priority due to accumulation in the food chain. Recent success with reduction of PCB bioavailability due to adsorption onto activated carbon led to the recognition of in situ treatment as a remediation approach. In this study, reduced bioavailability and subsequent break-down of PCBs in dehalorespiring biofilms was investigated using Dehalobium chlorocoercia DF1. DF1 formed a patchy biofilm ranging in thickness from 3.9 to 6.7 µm (average 4.6 ± 0.87 µm), while the biofilm coverage varied from 5.5% (sand) to 20.2% (activated carbon), indicating a preference for sorptive materials. Quantification of DF1 biofilm bacteria showed 1.2-15.3 × 109 bacteria per gram of material. After 22 days, coal activated carbon, bone biochar, polyoxymethylene, and sand microcosms had dechlorinated 73%, 93%, 100%, and 83%, respectively. These results show that a biofilm-based inoculum for bioaugmentation of PCBs in sediment can be an efficient approach.


Assuntos
Biofilmes , Carbono/química , Carvão Vegetal/química , Sedimentos Geológicos/química , Bifenilos Policlorados/química , Adsorção , Disponibilidade Biológica , Biomassa , Cloro/química , Chloroflexi/crescimento & desenvolvimento , Halogenação , Microscopia Confocal , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase
4.
Environ Sci Technol ; 51(18): 10691-10699, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809549

RESUMO

This report describes results of a bench-scale treatability study to evaluate the efficacy of bioaugmentation with bioamended activated carbon (AC) for in situ treatment of polychlorinated biphenyl (PCB) impacted sediments. To this end, the ability of PCB transforming microorganisms to degrade and reduce the overall concentration of PCBs in sediment was determined in 2 L recirculating mesocosms designed to simulate conditions in Abraham's Creek in Quantico, Virginia. Ten sediment mesocosms were tested for the effects of AC alone, AC with slow release electron donor (cellulose) and different concentrations and combinations of PCB dehalogenating and degrading microorganisms added as bioamendments. A 78% reduction of total PCBs was observed using a cell titer of 5 × 105 Dehalobium chlorocoercia and Paraburkholderia xenovorans cells g-1 sediment with 1.5% AC as a delivery system. Levels of both higher and lower chlorinated congeners were reduced throughout the sediment column indicating that both anaerobic reductive dechlorination and aerobic degradation occurred concurrently. Porewater concentrations of all PCB homologues were reduced 94-97% for bioaugmented treatments. Toxicity associated with coplanar PCBs was reduced by 90% after treatment based on toxic equivalency of dioxin-like congeners. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms on AC could be an effective, environmentally sustainable strategy to reduce PCB levels in contaminated sediment.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Bactérias , Carvão Vegetal , Sedimentos Geológicos , Virginia
6.
Environ Sci Technol ; 47(8): 3807-15, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23463900

RESUMO

Bioremediation of sediments contaminated with commercial polychlorinated biphenyls (PCBs) is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dehalobium chlorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with granulated activated carbon (GAC) as a delivery system was determined in 2 L laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD, USA. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 to <2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, nonbioaugmented controls containing filtered culture supernatant showed only a 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both nonindigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective and environmentally sustainable strategy to reduce PCBs levels in contaminated sediment.


Assuntos
Burkholderia/metabolismo , Chloroflexi/metabolismo , Sedimentos Geológicos/microbiologia , Halogenação , Bifenilos Policlorados/metabolismo , Aerobiose , Anaerobiose , Baltimore , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Oxirredução , Reação em Cadeia da Polimerase
7.
Environ Sci Technol ; 45(20): 8772-9, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21902247

RESUMO

Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium Dehalobium chlorocoercia DF1 was tested in 2-L laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments.


Assuntos
Bactérias Anaeróbias/metabolismo , Bifenilos Policlorados/metabolismo , Arocloros/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos
8.
Isotopes Environ Health Stud ; 57(5): 535-552, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34519245

RESUMO

Lake Sevan is a meso-eutrophic water body, which was severely impacted by anthropogenic level decrease, pollution and eutrophication during the last century. Starting in the 1970s, these processes resulted in the formation of an oxygen-depleted hypolimnion during summer-autumn stratification of the lake. In this work, we demonstrate for the first time that eutrophication of the lake leads not only to the full depletion of oxygen and nitrate in the hypolimnion but as well to the presence of sulfate-reducing microorganisms and toxic hydrogen sulfide. Concentrations of hydrogen sulfide in the hypolimnion of Major and Minor Sevan in October were as high as 9 and 39 µM, respectively. In October 2019, 66 % of lake's bottom was covered by sulfidic waters, while the fraction of sulfidic water volume reached 19 %. Values of δ34S for hypolimnetic sulfide are lower by only 7-12 ‰ compared to epilimnetic sulfate, while δ33S values of sulfide are similar to the δ33S values of sulfate. These isotopic fingerprints are not consistent with microbial sulfate reduction as the sole source of hydrogen sulfide in the hypolimnion. We attribute the formation of a sulfidic deep-water layer to a combination of microbial sulfate reduction in the water column and diffusion of hydrogen sulfide from the sediments.


Assuntos
Eutrofização , Lagos , Armênia , Sedimentos Geológicos , Sulfetos , Água
9.
Microbiol Spectr ; 9(1): e0049721, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431719

RESUMO

Nontyphoidal Salmonella bacteria are the causative agent of salmonellosis, which accounts for the majority of foodborne illness of bacterial etiology in humans. Here, we demonstrate the safety and efficacy of the prophylactic administration of a bacteriophage preparation termed FOP (foodborne outbreak pill), which contains lytic phages targeting Salmonella (SalmoFresh phage cocktail), Shiga toxin-producing Escherichia coli (STEC), and Listeria monocytogenes, for lowering Salmonella burdens in OMM12 gnotobiotic mice. Prophylactic administration of FOP significantly reduced the levels of Salmonella in feces and in intestinal sections compared to the levels in controls. Moreover, the overall symptoms of the disease were also considerably lessened. Dose-dependent administration of FOP showed that phage amplification reached similarly high levels in less than 48 h independent of dose. In addition, 16S rRNA gene analysis showed that FOP did not alter the intestinal microbiota of healthy OMM12 mice and reduced microbiota perturbations induced by Salmonella. FOP maintained its full potency against Salmonella in comparison to that of SalmoFresh, its Salmonella-targeting component phages alone. Altogether, the data support that preventive administration of FOP may offer a safe and effective approach for reducing the risk of foodborne infections caused by Salmonella and, potentially, other foodborne bacteria (namely, STEC and L. monocytogenes) targeted by the FOP preparation. IMPORTANCE Foodborne bacterial infections cause worldwide economic loss. During an epidemic, the use of antibiotics to slow down the spread of the disease is not recommended because of their side effects on the resident microbiota and the selection of antibiotic-resistant bacteria. Here, we investigated the potential for the prophylactic administration of bacteriophages (viruses infecting bacteria) to reduce the burden of Salmonella in vivo using mice colonized by a synthetic microbiota. We found that the repeated administration of bacteriophages was safe and efficient in lowering the Salmonella burden. Perturbations of the microbiota by the Salmonella infection were also reduced when mice received bacteriophages. Altogether, these data support the use of bacteriophages as a prophylactic intervention to lower the spread of foodborne epidemics.


Assuntos
Terapia por Fagos , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/virologia , Animais , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Profilaxia Pré-Exposição , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia
10.
Appl Environ Microbiol ; 76(11): 3590-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382807

RESUMO

3-Nitropropionic acid (3NPA) is a widespread nitroaliphatic toxin found in a variety of legumes and fungi. Several enzymes have been reported that can transform the compound, but none led to the mineralization of 3NPA. We report here the isolation of bacteria that grow on 3NPA and its anion, propionate-3-nitronate (P3N), as the sole source of carbon, nitrogen, and energy. Experiments with resting cells, cell extracts, and purified enzymes indicate that the pathway involves conversion of 3NPA to P3N, which upon denitration yields malonic semialdehyde, nitrate, nitrite, and traces of H(2)O(2). Malonic semialdehyde is decarboxylated to acetyl coenzyme A. The gene that encodes the enzyme responsible for the denitration of P3N was cloned and expressed, and the enzyme was purified. Stoichiometry of the reaction indicates that the enzyme is a monooxygenase. The gene sequence is related to a large group of genes annotated as 2-nitropropane dioxygenases, but the P3N monooxygenase and closely related enzymes form a cluster within COG2070 that differs from previously characterized 2-nitropropane dioxygenases by their substrate specificities and reaction products. The results suggest that the P3N monooxygenases enable bacteria to exploit 3NPA in natural habitats as a growth substrate.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Metabolismo Energético/genética , Nitrocompostos/metabolismo , Nitrogênio/metabolismo , Propionatos/metabolismo , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Redes e Vias Metabólicas/genética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
11.
J Hazard Mater ; 321: 879-887, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27745958

RESUMO

Aroclor 1254 was the second most produced commercial PCB mixture and is found in soils, sediments and sewage throughout the globe. This commercial PCB mixture is considered particularly toxic because of the relatively high concentrations of congeners with dioxin-like properties. The potential for risk reduction by microbial reductive dechlorination of Aroclor 1254 (A1254) was investigated in sediment microcosms from Grasse River (GR), Massena, NY. The specificity of A1254 dechlorination was doubly- and singly-flanked chlorines in meta positions and to a less extent doubly-flanked para chlorines of 2345-substituted chlorobiphenyl rings. The average dechlorination rate of A1254 was 0.0153 Cl-/biphenyl/day, and dechlorination rates of single congeners ranged between 0.001 and 0.0074 Cl-/biphenyl/day. Potential risk associated with A1254 based on the toxic equivalency factors of the dioxin-like congeners was reduced by 83%. Additional potential risk associated with bioaccumulation in fish was reduced by 35% based on biota-sediment accumulation factor estimates for all detected congeners. Finally, the dechlorination end-products were tri- and tetra-chlorobiphenyls with unflanked chlorines, all of which are susceptible to further degradation by aerobic microorganisms. The combined results indicate that microbial reductive dechlorination has the potential for reducing risk associated with toxicity and bioaccumulation in fish in sites contaminated with A1254.


Assuntos
/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Anaerobiose , Animais , Cloro/química , Meio Ambiente , Euryarchaeota/metabolismo , Peixes , Comportamento de Redução do Risco , Microbiologia da Água
12.
Water Res ; 47(1): 141-52, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23123087

RESUMO

Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5-3.0 V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40-60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O(2) was not generated, indicating a mechanism of degradation independent of electrolytic O(2). Low voltage stimulation of the microbial degradation of weathered PCBs observed in this study suggests that this approach could be a cost-effective, environmentally sustainable strategy to remediate PCBs in situ.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Bifenilos Policlorados/química , Estimulação Elétrica , Poluentes Químicos da Água/metabolismo
13.
Appl Environ Microbiol ; 68(6): 3129-32, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12039777

RESUMO

Previous in vitro experiments with Desulfovibrio vulgaris strain Hildenborough demonstrated that extracts containing hydrogenase and cytochrome c3 could reduce uranium(VI) to uranium(IV) with hydrogen as the electron donor. To test the involvement of these proteins in vivo, a cytochrome c3 mutant of D. desulfuricans strain G20 was assayed and found to be able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. Cytochrome c3 appears to be a part of the in vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein.


Assuntos
Grupo dos Citocromos c/metabolismo , Desulfovibrio/metabolismo , Urânio/metabolismo , Grupo dos Citocromos c/genética , Mutação , Oxirredução
14.
Arch Microbiol ; 181(6): 398-406, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15114437

RESUMO

Cytochrome c(3) of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c(3) in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c(3) ( cycA) to lacZ. Instead, cytochrome c(3) protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c(3) with U(IV) was interpreted to be non-specific, since pure cytochrome c(3) adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe(2)O(3)), and commercially available U(IV) oxide.


Assuntos
Grupo dos Citocromos c/metabolismo , Desulfovibrio desulfuricans/metabolismo , Urânio/metabolismo , Adsorção , Fusão Gênica Artificial , Cobre/química , Grupo dos Citocromos c/genética , Compostos Férricos/química , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Óperon Lac/genética , Óperon Lac/fisiologia , Oxirredução , Periplasma/química , Proteínas Periplásmicas/análise , RNA Bacteriano/análise , RNA Mensageiro/análise , Transcrição Gênica , Compostos de Urânio/química , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa