Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Mater ; 20(6): 892-903, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495631

RESUMO

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Assuntos
Membrana Basal/metabolismo , Fenômenos Mecânicos , Metástase Neoplásica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Netrinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(39): E8155-E8164, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893995

RESUMO

Biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) was lost during human evolution due to inactivation of the CMAH gene, possibly expediting divergence of the Homo lineage, due to a partial fertility barrier. Neu5Gc catabolism generates N-glycolylhexosamines, which are potential precursors for glycoconjugate biosynthesis. We carried out metabolic labeling experiments and studies of mice with human-like Neu5Gc deficiency to show that Neu5Gc degradation is the metabolic source of UDP-GlcNGc and UDP-GalNGc and the latter allows an unexpectedly selective incorporation of N-glycolyl groups into chondroitin sulfate (CS) over other potential glycoconjugate products. Partially N-glycolylated-CS was chemically synthesized as a standard for mass spectrometry to confirm its natural occurrence. Much lower amounts of GalNGc in human CS can apparently be derived from Neu5Gc-containing foods, a finding confirmed by feeding Neu5Gc-rich chow to human-like Neu5Gc-deficient mice. Unlike the case with Neu5Gc, N-glycolyl-CS was also stable enough to be detectable in animal fossils as old as 4 My. This work opens the door for investigating the biological and immunological significance of this glycosaminoglycan modification and for an "ancient glycans" approach to dating of Neu5Gc loss during the evolution of Homo.


Assuntos
Sulfatos de Condroitina/química , Comportamento Alimentar , Glicoconjugados/química , Ácidos Neuramínicos/química , Animais , Células CHO , Linhagem Celular , Sulfatos de Condroitina/isolamento & purificação , Cricetulus , Fósseis , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pan troglodytes , Carne Vermelha/análise
3.
Glycobiology ; 28(9): 670-696, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546349

RESUMO

Aberrant glycan epitopes are a classic hallmark of malignant transformation, yet their full clinical potential in cancer diagnostics and therapeutics is yet to be realized. This is partly because our understanding of how these epitopes are regulated remains poorly understood. In this review cancer glycan epitopes for the major glycan classes are summarized with a focus on their biosynthesis, structure and role in cancer progression. Their application as cancer biomarkers, in particular the more recent work on cancer glycoforms, and the advantages these offer over the glycan or protein alone are discussed. Finally, emerging concepts which expand on the current view of the cancer glycan epitope beyond the single structure, to patterns and the whole glycocalyx, are described. These new approaches that consider the cancer glycan epitope as a glycoform, or as a pattern of many epitope structures, are providing new targets both for cancer biomarkers and therapeutics currently in development at the bench and the clinic.


Assuntos
Biomarcadores Tumorais/metabolismo , Epitopos/química , Epitopos/metabolismo , Neoplasias/química , Neoplasias/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/química , Epitopos/biossíntese , Humanos , Polissacarídeos/biossíntese
4.
Proc Natl Acad Sci U S A ; 112(2): 542-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548184

RESUMO

A well known, epidemiologically reproducible risk factor for human carcinomas is the long-term consumption of "red meat" of mammalian origin. Although multiple theories have attempted to explain this human-specific association, none have been conclusively proven. We used an improved method to survey common foods for free and glycosidically bound forms of the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc), showing that it is highly and selectively enriched in red meat. The bound form of Neu5Gc is bioavailable, undergoing metabolic incorporation into human tissues, despite being a foreign antigen. Interactions of this antigen with circulating anti-Neu5Gc antibodies could potentially incite inflammation. Indeed, when human-like Neu5Gc-deficient mice were fed bioavailable Neu5Gc and challenged with anti-Neu5Gc antibodies, they developed evidence of systemic inflammation. Such mice are already prone to develop occasional tumors of the liver, an organ that can incorporate dietary Neu5Gc. Neu5Gc-deficient mice immunized against Neu5Gc and fed bioavailable Neu5Gc developed a much higher incidence of hepatocellular carcinomas, with evidence of Neu5Gc accumulation. Taken together, our data provide an unusual mechanistic explanation for the epidemiological association between red meat consumption and carcinoma risk. This mechanism might also contribute to other chronic inflammatory processes epidemiologically associated with red meat consumption.


Assuntos
Inflamação/etiologia , Neoplasias Hepáticas Experimentais/etiologia , Carne/efeitos adversos , Carne/análise , Ácidos Neuramínicos/efeitos adversos , Animais , Anticorpos Bloqueadores/metabolismo , Progressão da Doença , Análise de Alimentos , Humanos , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Ácido N-Acetilneuramínico/análise , Ácidos Neuramínicos/análise , Ácidos Neuramínicos/imunologia , Fatores de Risco
5.
J Proteome Res ; 16(8): 3083-3091, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675934

RESUMO

The extracellular matrix (ECM) is a complex meshwork of insoluble fibrillar proteins and signaling factors interacting together to provide architectural and instructional cues to the surrounding cells. Alterations in ECM organization or composition and excessive ECM deposition have been observed in diseases such as fibrosis, cardiovascular diseases, and cancer. We provide here optimized protocols to solubilize ECM proteins from normal or tumor tissues, digest the proteins into peptides, analyze ECM peptides by mass spectrometry, and interpret the mass spectrometric data. In addition, we present here two novel R-script-based web tools allowing rapid annotation and relative quantification of ECM proteins, peptides, and intensity/abundance in mass spectrometric data output files. We illustrate this protocol with ECMs obtained from two pairs of tissues, which differ in ECM content and cellularity: triple-negative breast cancer and adjacent mammary tissue, and omental metastasis from high-grade serous ovarian cancer and normal omentum. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD005554.


Assuntos
Matriz Extracelular/química , Neoplasias Ovarianas/química , Proteômica/métodos , Neoplasias de Mama Triplo Negativas/química , Mama/citologia , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/análise , Feminino , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Omento/citologia , Neoplasias Ovarianas/secundário , Neoplasias Ovarianas/ultraestrutura , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 111(16): 5998-6003, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711415

RESUMO

Compelling evidence for naturally occurring immunosurveillance against malignancies informs and justifies some current approaches toward cancer immunotherapy. However, some types of immune reactions have also been shown to facilitate tumor progression. For example, our previous studies showed that although experimental tumor growth is enhanced by low levels of circulating antibodies directed against the nonhuman sialic acid N-glycolyl-neuraminic acid (Neu5Gc), which accumulates in human tumors, growth could be inhibited by anti-Neu5Gc antibodies from a different source, in a different model. However, it remains generally unclear whether the immune responses that mediate cancer immunosurveillance vs. those responsible for inflammatory facilitation are qualitatively and/or quantitatively distinct. Here, we address this question using multiple murine tumor growth models in which polyclonal antibodies against tumor antigens, such as Neu5Gc, can alter tumor progression. We found that although growth was stimulated at low antibody doses, it was inhibited by high doses, over a linear and remarkably narrow range, defining an immune response curve (IRC; i.e., inverse hormesis). Moreover, modulation of immune responses against the tumor by altering antibody avidity or by enhancing innate immunity shifted the IRC in the appropriate direction. Thus, the dualistic role of immunosurveillance vs. inflammation in modulating tumor progression can be quantitatively distinguished in multiple model systems, and can occur over a remarkably narrow range. Similar findings were made in a human tumor xenograft model using a narrow range of doses of a monoclonal antibody currently in clinical use. These findings may have implications for the etiology, prevention, and treatment of cancer.


Assuntos
Anticorpos Antineoplásicos/imunologia , Hormese/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunoglobulina G/imunologia , Inflamação/patologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ácidos Neuramínicos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(39): 14211-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225409

RESUMO

Certain pathogenic bacteria are known to modulate the innate immune response by decorating themselves with sialic acids, which can engage the myelomonocytic lineage inhibitory receptor Siglec-9, thereby evading immunosurveillance. We hypothesized that the well-known up-regulation of sialoglycoconjugates by tumors might similarly modulate interactions with innate immune cells. Supporting this hypothesis, Siglec-9-expressing myelomonocytic cells found in human tumor samples were accompanied by a strong up-regulation of Siglec-9 ligands. Blockade of Siglec-9 enhanced neutrophil activity against tumor cells in vitro. To investigate the function of inhibitory myelomonocytic Siglecs in vivo we studied mouse Siglec-E, the murine functional equivalent of Siglec-9. Siglec-E-deficient mice showed increased in vivo killing of tumor cells, and this effect was reversed by transgenic Siglec-9 expression in myelomonocytic cells. Siglec-E-deficient mice also showed enhanced immunosurveillance of autologous tumors. However, once tumors were established, they grew faster in Siglec-E-deficient mice. In keeping with this, Siglec-E-deficient macrophages showed a propensity toward a tumor-promoting M2 polarization, indicating a secondary role of CD33-related Siglecs in limiting cancer-promoting inflammation and tumor growth. Thus, we define a previously unidentified impact of inhibitory myelomonocytic Siglecs in cancer biology, with distinct roles that reflect the dual function of myelomonocytic cells in cancer progression. In keeping with this, a human polymorphism that reduced Siglec-9 binding to carcinomas was associated with improved early survival in non-small-cell lung cancer patients, which suggests that Siglec-9 might be therapeutically targeted within the right time frame and stage of disease.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Imunidade Inata , Neoplasias/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Ativação de Neutrófilo , Polimorfismo de Nucleotídeo Único , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Microambiente Tumoral/imunologia
8.
J Biol Chem ; 290(21): 13202-14, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25750127

RESUMO

As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.


Assuntos
Membrana Celular/metabolismo , Matriz Extracelular/enzimologia , Glicocálix/metabolismo , Microglia/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Imunofluorescência , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Fatores de Crescimento Neural/genética , Neuraminidase/genética , Oxigênio/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Glycobiology ; 26(2): 111-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518624

RESUMO

During malignant transformation, glycosylation is heavily altered compared with healthy tissue due to differential expression of glycosyltransferases, glycosidases and monosaccharide transporters within the cancer microenvironment. One key change of malignant tissue glycosylation is the alteration of sialic acid processing that leads to a general upregulation of sialylated glycans (hypersialylation) on cell surfaces and an increased introduction of the non-human sialic acid N-glycolyl-neuraminic acid (Neu5Gc) instead of N-acetyl-neuraminic acid into cell surface glycans. These changes have been shown to be the result of altered sialyltransferase and sialidase expression. Functionally, cancer-associated hypersialylation appears to directly impact tumor cell interaction with the microenvironment, in particular the modulation of sialic acid-binding lectins on immune cells. Moreover, Neu5Gc expression in human tissues enhances inflammation due to an anti-Neu5Gc immune response, which can potentially influence inflammation-induced cancer and cancer-associated inflammation. In this review, we summarize the changes of sialic acid biology within the malignant microenvironment and the resulting effect on cancer immunity.


Assuntos
Ácidos Siálicos/metabolismo , Microambiente Tumoral , Animais , Humanos , Evasão da Resposta Imune , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia
10.
J Immunol ; 191(1): 228-37, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23709682

RESUMO

Clinical evidence for a more active immune response in humans compared with our closest hominid relative, the chimpanzee, includes the progression of HIV infection to AIDS, hepatitis B- and C-related inflammation, autoimmunity, and unwanted harmful immune responses to viral gene transfer vectors. Humans have a unique mutation of the enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH), causing loss of expression of the sialic acid Neu5Gc. This mutation, occurring 2 million years ago, likely altered the expression and function of ITIM-bearing inhibitory receptors (Siglecs) that bind sialic acids. Previous work showed that human T cells proliferate faster than chimpanzee T cells upon equivalent stimulation. In this article, we report that Cmah(-/-) mouse T cells proliferate faster and have greater expression of activation markers than wild-type mouse T cells. Metabolically reintroducing Neu5Gc diminishes the proliferation and activation of both human and murine Cmah(-/-) T cells. Importantly, Cmah(-/-) mice mount greater T cell responses to an adenovirus encoding an adeno-associated virus capsid transgene. Upon lymphocytic choriomeningitis virus infection, Cmah(-/-) mice make more lymphocytic choriomeningitis virus-specific T cells than WT mice, and these T cells are more polyfunctional. Therefore, a uniquely human glycosylation mutation, modeled in mice, leads to a more proliferative and active T cell population. These findings in a human-like mouse model have implications for understanding the hyperimmune responses that characterize some human diseases.


Assuntos
Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proliferação de Células , Células Cultivadas , Dependovirus/genética , Dependovirus/imunologia , Dependovirus/metabolismo , Glicosilação , Humanos , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Subpopulações de Linfócitos T/enzimologia , Regulação para Cima/genética , Regulação para Cima/imunologia
11.
Adv Sci (Weinh) ; 11(2): e2305842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967351

RESUMO

Bone metastases are a common cause of suffering in breast and prostate cancer patients, however, the interaction between bone cells and cancer cells is poorly understood. Using a series of co-culture, conditioned media, human cancer spheroid, and organ-on-a-chip experiments, this study reveals that osteocytes suppress cancer cell proliferation and increase migration via tumor necrosis factor alpha (TNF-α) secretion. This action is regulated by osteocyte primary cilia and associated intraflagellar transport protein 88 (IFT88). Furthermore, it shows that cancer cells block this mechanism by secreting transforming growth factor beta (TGF-ß), which disrupts osteocyte cilia and IFT88 gene expression. This bi-directional crosstalk signaling between osteocytes and cancer cells is common to both breast and prostate cancer. This study also proposes that osteocyte inhibition of cancer cell proliferation decreases as cancer cells increase, producing more TGF-ß. Hence, a positive feedback loop develops accelerating metastatic tumor growth. These findings demonstrate the importance of cancer cell-osteocyte signaling in regulating breast and prostate bone metastases and support the development of therapies targeting this pathway.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Osteócitos/metabolismo , Cílios , Próstata , Neoplasias Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Adv Healthc Mater ; 13(17): e2301941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471128

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Matriz Extracelular , Hidrogéis , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Hidrogéis/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Matriz Extracelular/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Fenótipo , Receptores CXCR4/metabolismo
13.
Cancer Res Commun ; 4(4): 970-985, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517140

RESUMO

Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE: The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.


Assuntos
Neoplasias , Versicanas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Sulfatos de Condroitina , Fenótipo , Microambiente Tumoral , Versicanas/química , Animais
14.
J Biol Chem ; 287(34): 28865-81, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22692205

RESUMO

The two major mammalian sialic acids are N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). The only known biosynthetic pathway generating Neu5Gc is the conversion of CMP-N-acetylneuraminic acid into CMP-Neu5Gc, which is catalyzed by the CMP-Neu5Ac hydroxylase enzyme. Given the irreversible nature of this reaction, there must be pathways for elimination or degradation of Neu5Gc, which would allow animal cells to adjust Neu5Gc levels to their needs. Although humans are incapable of synthesizing Neu5Gc due to an inactivated CMAH gene, exogenous Neu5Gc from dietary sources can be metabolically incorporated into tissues in the face of an anti-Neu5Gc antibody response. However, the metabolic turnover of Neu5Gc, which apparently prevents human cells from continued accumulation of this immunoreactive sialic acid, has not yet been elucidated. In this study, we show that pre-loaded Neu5Gc is eliminated from human cells over time, and we propose a conceivable Neu5Gc-degrading pathway based on the well studied metabolism of N-acetylhexosamines. We demonstrate that murine tissue cytosolic extracts harbor the enzymatic machinery to sequentially convert Neu5Gc into N-glycolylmannosamine, N-glycolylglucosamine, and N-glycolylglucosamine 6-phosphate, whereupon irreversible de-N-glycolylation of the latter results in the ubiquitous metabolites glycolate and glucosamine 6-phosphate. We substantiate this finding by demonstrating activity of recombinant human enzymes in vitro and by studying the fate of radiolabeled pathway intermediates in cultured human cells, suggesting that this pathway likely occurs in vivo. Finally, we demonstrate that the proposed degradative pathway is partially reversible, showing that N-glycolylmannosamine and N-glycolylglucosamine (but not glycolate) can serve as precursors for biosynthesis of endogenous Neu5Gc.


Assuntos
Amino Açúcares/metabolismo , Oxigenases de Função Mista/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Amino Açúcares/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Ácido N-Acetilneuramínico/genética , Especificidade da Espécie
15.
J Biol Chem ; 287(34): 28898-916, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22692203

RESUMO

The outermost positions of mammalian cell-surface glycans are predominantly occupied by the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). To date, hydroxylation of CMP-Neu5Ac resulting in the conversion into CMP-Neu5Gc is the only known enzymatic reaction in mammals to synthesize a monosaccharide carrying an N-glycolyl group. In our accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549), we report a metabolic pathway for degradation of Neu5Gc, demonstrating that N-acetylhexosamine pathways are tolerant toward the N-glycolyl substituent of Neu5Gc breakdown products. In this study, we show that exogenously added N-glycolylgalactosamine (GalNGc) serves as a precursor for Neu5Gc de novo biosynthesis, potentially involving seven distinct mammalian enzymes. Following the GalNAc salvage pathway, UDP-GalNGc is epimerized to UDP-GlcNGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway. Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase-deficient cells, we confirm that conversion of GalNGc into Neu5Gc depends on this key enzyme of sialic acid biosynthesis. Furthermore, we demonstrate by mass spectrometry that the metabolic intermediates UDP-GalNGc and UDP-GlcNGc serve as substrates for assembly of most major classes of cellular glycans. We show for the first time incorporation of GalNGc and GlcNGc into chondroitin/dermatan sulfates and heparan sulfates, respectively. As demonstrated by structural analysis, N-glycolylated hexosamines were found in cellular gangliosides and incorporated into Chinese hamster ovary cell O-glycans. Remarkably, GalNAc derivatives altered the overall O-glycosylation pattern as indicated by the occurrence of novel O-glycan structures. This study demonstrates that mammalian N-acetylhexosamine pathways and glycan assembly are surprisingly tolerant toward the N-glycolyl substituent.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células CHO , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Cricetinae , Cricetulus , Dermatan Sulfato/genética , Dermatan Sulfato/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ácido N-Acetilneuramínico/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
16.
J Biol Chem ; 287(34): 28917-31, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22692207

RESUMO

The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.


Assuntos
Amino Açúcares/metabolismo , Química Encefálica/fisiologia , Encéfalo/metabolismo , Ácidos Neuramínicos/metabolismo , Amino Açúcares/química , Animais , Bactérias/química , Bactérias/metabolismo , Configuração de Carboidratos , Bovinos , Golfinhos , Elefantes , Evolução Molecular , Hidrólise , Camundongos , Ácido N-Acetilneuramínico , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ácidos Neuramínicos/química , Neuraminidase/química , Neuraminidase/metabolismo , Pan troglodytes , Ratos , Especificidade da Espécie , Suínos
17.
Glycobiology ; 28(9): 638-639, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084981
19.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765593

RESUMO

Organ-on-chip systems are capable of replicating complex tissue structures and physiological phenomena. The fine control of biochemical and biomechanical cues within these microphysiological systems provides opportunities for cancer researchers to build complex models of the tumour microenvironment. Interest in applying organ chips to investigate mechanisms such as metastatsis and to test therapeutics has grown rapidly, and this review draws together the published research using these microfluidic platforms to study cancer. We focus on both in-house systems and commercial platforms being used in the UK for fundamental discovery science and therapeutics testing. We cover the wide variety of cancers being investigated, ranging from common carcinomas to rare sarcomas, as well as secondary cancers. We also cover the broad sweep of different matrix microenvironments, physiological mechanical stimuli and immunological effects being replicated in these models. We examine microfluidic models specifically, rather than organoids or complex tissue or cell co-cultures, which have been reviewed elsewhere. However, there is increasing interest in incorporating organoids, spheroids and other tissue cultures into microfluidic organ chips and this overlap is included. Our review includes a commentary on cancer organ-chip models being developed and used in the UK, including work conducted by members of the UK Organ-on-a-Chip Technologies Network. We conclude with a reflection on the likely future of this rapidly expanding field of oncological research.

20.
STAR Protoc ; 3(1): 101086, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35072115

RESUMO

Three-dimensional (3D), multicellular invitro models provide a useful platform for studying human cancer biology, particularly through deconvolution of the tumor microenvironment, or where animal models do not recapitulate the human condition. Here, we detail a protocol for building human multicellular models made of patient-derived primary cells and malignant cell lines, which recapitulate features of the tumor microenvironment. This protocol is optimized for building 3D models of high-grade serous ovarian cancer omental metastasis but can be adapted for modeling other cancers. For complete details on the use and execution of this profile, please refer to Delaine-Smith et al. (2021) and Malacrida et al. (2021).


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa