RESUMO
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.
Assuntos
Ecossistema , Espécies Introduzidas , Plantas , Plantas/classificação , Estados Unidos , Florestas , Biodiversidade , Fenômenos Fisiológicos Vegetais , Raízes de PlantasRESUMO
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.
Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , IncertezaRESUMO
Mast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought-tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem 'rhythm' to forest processes that is synchronized above- and belowground.
Assuntos
Fagus , Micorrizas , Fagus/microbiologia , Micorrizas/fisiologia , Biodiversidade , Microbiologia do Solo , Sementes/microbiologia , Suíça , Fungos/fisiologia , MicobiomaRESUMO
PREMISE: Glandular trichomes are implicated in direct and indirect defense of plants. However, the degree to which glandular and non-glandular trichomes have evolved as a consequence of herbivory remains unclear, because their heritability, their association with herbivore resistance, their trade-offs with one another, and their association with other functions are rarely quantified. METHODS: We conducted a phylogenetic comparison of trichomes and herbivore resistance against the generalist caterpillar, Heliothis virescens, among tarweed species (Asteraceae: Madiinae) and a genetic correlation study comparing those same traits among maternal half-sibs of three tarweed species. RESULTS: Within a tarweed species, we found no evidence that herbivore growth rate decreased on tarweed individuals or maternal sib groups with more glandularity or denser trichomes. However, tarweed species with more glandularity and fewer non-glandular trichomes resulted in slower-growing herbivores. Likewise, a trade-off between glandular and non-glandular trichomes was apparent among tarweed species, but not among individuals or sib groups within a species. CONCLUSIONS: Our results suggest that this key herbivore does not select for trichomes as a direct defense in tarweed species. However, trichomes differed substantially among species and likely affect herbivore pressure on those species. Our results demonstrate that trade-offs among plant traits, as well as inference on the function of those traits, can depend on scale.
Assuntos
Asteraceae , Herbivoria , Filogenia , PlantasRESUMO
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , FlorestasRESUMO
Declines in bumble bee species range and abundances are documented across multiple continents and have prompted the need for research to aid species recovery and conservation. The rusty patched bumble bee (Bombus affinis) is the first federally listed bumble bee species in North America. We conducted a range-wide population genetics study of B. affinis from across all extant conservation units to inform conservation efforts. To understand the species' vulnerability and help establish recovery targets, we examined population structure, patterns of genetic diversity, and population differentiation. Additionally, we conducted a site-level analysis of colony abundance to inform prioritizing areas for conservation, translocation, and other recovery actions. We find substantial evidence of population structuring along an east-to-west gradient. Putative populations show evidence of isolation by distance, high inbreeding coefficients, and a range-wide male diploidy rate of ~15%. Our results suggest the Appalachians represent a genetically distinct cluster with high levels of private alleles and substantial differentiation from the rest of the extant range. Site-level analyses suggest low colony abundance estimates for B. affinis compared to similar datasets of stable, co-occurring species. These results lend genetic support to trends from observational studies, suggesting that B. affinis has undergone a recent decline and exhibit substantial spatial structure. The low colony abundances observed here suggest caution in overinterpreting the stability of populations even where B. affinis is reliably detected interannually. These results help delineate informed management units, provide context for the potential risks of translocation programs, and help set clear recovery targets for this and other threatened bumble bee species.
Assuntos
Himenópteros , Abelhas/genética , Masculino , Animais , Espécies em Perigo de ExtinçãoRESUMO
AbstractOaks (Quercus spp.) are masting species exhibiting highly variable and synchronized acorn production. We investigated the hypothesis that periodical cicadas (Magicada spp.), well known to have strong effects on the ecosystems in which they occur, affect acorn production of oaks through their xylem feeding habits as nymphs, the oviposition damage they inflict as adults during emergences, or the nutrient pulse resulting from the decomposition of their bodies following breeding. We found negative effects on acorn production during emergence years and the year following emergences and enhanced acorn production 2 years after emergence. We also found evidence indicating a significant effect of cicada emergences on spatial synchrony of acorn production by trees growing within the range of the same cicada brood compared with different broods. These results demonstrate that periodical cicadas act as a trophic environmental "veto" depressing acorn production during and immediately following emergences, after which the nutrient pulse associated with the cicada's demise enhances oak reproduction.
Assuntos
Hemípteros , Quercus , Animais , Feminino , Ecossistema , Reprodução , Árvores , SementesRESUMO
Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale-dependent impact of biological invasions on native richness from the shape of the native species-area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non-native plant cover. Decreases in native richness were consistently associated with non-native species cover, but native richness was compromised only at relatively high levels of non-native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross-scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.
Assuntos
Biodiversidade , Ecossistema , Humanos , Espécies Introduzidas , Plantas , GeografiaRESUMO
Pesticides are a ubiquitous component of conventional crop production but come with considerable economic and ecological costs. We tested the hypothesis that variation in pesticide use among crop species is a function of crop economics and the phylogenetic relationship of a crop to native plants because unrelated crops accrue fewer herbivores and pathogens. Comparative analyses of a dataset of 93 Californian crops showed that more valuable crops and crops with close relatives in the native plant flora received greater pesticide use, explaining roughly half of the variance in pesticide use among crops against pathogens and herbivores. Phylogenetic escape from arthropod and pathogen pests results in lower pesticides, suggesting that the introduced status of some crops can be leveraged to reduce pesticides.
Assuntos
Agricultura/estatística & dados numéricos , Artrópodes , Produtos Agrícolas/genética , Ecossistema , Praguicidas , Animais , California , FilogeniaRESUMO
Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.
Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una observación directa durante muchos años, y estos conjuntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproducción de las plantas de todo el planeta, poniendo a disposición estos datos de libre acceso para la comunidad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales a nivel de población provenientes de 974 especies en 66 países. La mediana de la duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto de series temporales replicadas en gradientes geográficos y climáticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos una aplicación web asociada para la exploración de datos. MASTREE+ proporcionará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la investigación de la ecología y la evolución de las estrategias reproductivas en plantas perennes y el papel de la reproducción vegetal como determinante de la dinámica de ecosistemas.
Assuntos
Ecossistema , Reprodução , Ecologia , Plantas , Sementes/fisiologiaRESUMO
PREMISE: Ecologists have an incomplete understanding of the factors that select for deciduous, evergreen, and marcescent leaf habits. Evergreens have more opportunities for photosynthesis but may experience costs when abiotic conditions are unfavorable such as during ice and windstorms. METHODS: We documented branch loss for species of oaks (Quercus spp.) in a common garden in California during an unusual windstorm. RESULTS: Branches of marcescent trees were more likely to break during the storm, and this pattern had a negligible phylogenetic signature. Branches of evergreen and marcescent species were mostly alive before breaking, which likely accrued a fitness cost, while those of deciduous species were mostly already dead. One explanation for the overrepresentation of broken branches from marcescent species is that their petioles are inflexible and have greater wind loading compared to the flexible petioles of evergreen leaves and the leafless condition of deciduous branches. CONCLUSIONS: These results suggest that branch loss during unusual winter storms may be an important cost of a marcescent leaf habit.
Assuntos
Quercus , Fotossíntese , Filogenia , Folhas de Planta , Estações do AnoRESUMO
Indirect defence, the adaptive top-down control of herbivores by plant traits that enhance predation, is a central component of plant-herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant-natural enemy mutualism. By considering the broader scope of plant-herbivore-natural enemy interactions that comprise indirect defence, we can better understand plant-based food webs, as well as the evolutionary processes that have shaped them.
Assuntos
Insetos , Plantas , Animais , Ecossistema , Cadeia Alimentar , HerbivoriaRESUMO
Water limitation is a primary driver of plant geographic distributions and individual plant fitness. Drought resistance is the ability to survive and reproduce despite limited water, and numerous studies have explored its physiological basis in plants. However, it is unclear how drought resistance and trade-offs associated with drought resistance evolve within plant clades. We quantified the relationship between water availability and fitness for 13 short-lived plant taxa in the Streptanthus clade that vary in their phenology and the availability of water in the environments where they occur. We derived two parameters from these relationships: plant fitness when water is not limiting and the water inflection point (WIF), the watering level at which additional water is most efficiently turned into fitness. We used phylogenetic comparative methods to explore trade-offs related to drought resistance and trait plasticity and the degree to which water relationship parameters are conserved. Taxa from drier climates produced fruits at the lowest water levels, had a lower WIF, flowered earlier, had shorter life spans, had greater plastic water-use efficiency (WUE), and had lower fitness at nonlimiting water. In contrast, later-flowering Streptanthus taxa from less xeric climates experienced high fitness at nonlimiting water but had no fitness at the lowest water levels. Across the clade, we found a trade-off between drought resistance and fitness at high water, though a single ruderal species was an outlier in this relationship. Our results suggest that drought escape trades off with maximal fitness under nonlimiting water, and both are tied to phenology. We also found that variation in trait plasticity determines how different plant species produce fitness over a water gradient.
Assuntos
Adaptação Fisiológica , Brassicaceae/fisiologia , Água/metabolismo , Brassicaceae/classificação , California , Clima , Secas , Flores , FilogeniaRESUMO
Interannual variability of seed crops (CVp) has profound consequences for plant populations and food webs, where high CVp is termed 'masting'. Here we ask: is global variation in CVp better predicted by plant or habitat differences consistent with adaptive economies of scale, in which flower and seed benefits increase disproportionately during mast years; or by passive mechanisms, in which seed production responds to variation in resource availability associated with climate variability? To address this question, we compiled a dataset for phylogenetic comparative analysis of long-term fruit/seed production for plants comprising 920 time series spanning 311 plant species. Factors associated with both adaptive benefits of CVp (wind pollination and seed dispersal) and climatic variability (variability of summer precipitation) were among the best predictors of global variation in CVp. We observed a hump-shaped relationship between CVp and latitude and intermediate phylogenetic and geographic signals in CVp. CVp is patterned nonrandomly across the globe and over the plant tree of life, where high CVp is associated with species benefiting from economies of scale of seed or flower production and with species that experience variable rainfall over summer months when seeds usually mature.
Assuntos
Polinização , Sementes , Ecossistema , Filogenia , Estações do AnoRESUMO
Intraspecific variation in plant traits is a major cause of variation in herbivore feeding and performance. Plant defensive traits change as a plant grows, such that ontogeny may account for a substantial portion of intraspecific trait variation. We tested how the ontogenic stage of an individual plant, of an individual in the context of its neighboring plants, and of a patch of plants with mixed or uniform stages affect plant-herbivore interactions. To do this, we conducted an experimental study of the interactions between Lepidium draba, a perennial brassicaceous weed, and Plutella xylostella, a common herbivore of L. draba. We found that L. draba foliar glucosinolates, secondary metabolites often implicated in defense, decreased in concentration with plant age. In single-stage patches, herbivores performed similarly on L. draba plants of different ages. Furthermore, we found no difference in the cumulative performance of herbivores reared on mixed- or even-staged patches of L. draba. However, in mixed-stage patches, the damage experienced by a focal plant depended on the stage of neighboring plants, suggesting a preference hierarchy of the herbivore among plant stages. In our study, the amount of herbivory depended on the ontogenic neighborhood in which the plant grew. However, from the herbivore's perspective, variation in plant ontogenic stage was unimportant to its success in terms of feeding rate and final weight.
Assuntos
Herbivoria , Insetos , Animais , Glucosinolatos , Desenvolvimento Vegetal , PlantasRESUMO
Invasive, non-native species can have tremendous impacts on biotic communities, where they reduce the abundance and diversity of local species. However, it remains unclear whether impacts of non-native species arise from their high abundance or whether each non-native individual has a disproportionate impact - that is, a higher per-capita effect - on co-occurring species compared to impacts by native species. Using a long-term study of wetlands, we asked how temporal variation in dominant native and non-native plants impacted the abundance and richness of other plants in the recipient community. Non-native plants reached higher abundances than natives and had greater per-capita effects. The abundance-impact relationship between plant abundance and richness was nonlinear. Compared with increasing native abundance, increasing non-native abundance was associated with steeper declines in richness because of greater per-capita effects and nonlinearities in the abundance-impact relationship. Our study supports eco-evolutionary novelty of non-natives as a driver of their outsized impacts on communities.
Assuntos
Espécies Introduzidas , Plantas , Evolução Biológica , Áreas AlagadasRESUMO
Mast seeding, or masting, is the highly variable and spatially synchronous production of seeds by a population of plants. The production of variable seed crops is typically correlated with weather, so it is of considerable interest whether global climate change has altered the variability of masting or the size of masting events. We compiled 1086 datasets of plant seed production spanning 1900-2014 and from around the world, and then analysed whether the coefficient of variation (CV) in seed set, a measure of masting, increased over time. Over this 115-year period, seed set became more variable for plants as a whole and for the particularly well-studied taxa of conifers and oaks. The increase in CV corresponded with a decrease in the long-term mean of seed set of plant species. Seed set CV increased to a greater degree in plant taxa with a tendency towards masting. Seed set is becoming more variable among years, especially for plant taxa whose masting events are known to affect animal populations. Such subtle change in reproduction can have wide-ranging effects on ecosystems because seed crops provide critical resources for a wide range of taxa and have cascading effects throughout food webs.
Assuntos
Fagaceae/fisiologia , Pinaceae/fisiologia , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Reprodução , Estações do AnoRESUMO
Plant tolerance of herbivory, i.e., the ability to recover after damage, is an important component of how plants cope with herbivores. Tolerance has long been hypothesized to be constrained evolutionarily by plant resistance to herbivores, traits that allow plants to cope with stressful growing conditions, and traits that influence the timing of damage in relation to reproduction. Variation in tolerance and resistance can be caused by differences in the identity of the plant (e.g., genotype, species, clade) and by the context of the herbivore threat (e.g., identity of the herbivore, type of damage it causes, abiotic conditions in which the plant is growing). To date, the vast majority of studies have explored trade-offs with tolerance within species. Here, we test hypotheses of constraints on tolerance using comparative approaches in a clade of mustards, emphasizing the variety of contexts in which damage is realistically tolerated. We estimated tolerance to leaf damage, tolerance to apical clipping at the bolting stage - simulating browsing -, and resistance to a specialist and generalist lepidopteran herbivore for a group of native mustards, grown in field soils unique to each population and in a common potting soil. Resistance to herbivores was soil dependent, while surprisingly, tolerance was not. Phylogenetic signal in resistance to specialist and generalist lepidopteran herbivores was present, but only when plants were grown in field soils. Tolerance had low phylogenetic signal. Tolerance to leaf damage was unrelated to tolerance to simulated browse. We found no evidence for a resistance-tolerance trade-off, and some evidence for a soil-dependent positive correlation between tolerance and resistance to both herbivores. Drought-tolerant species had poorer ability to tolerate browse damage, and earlier flowering species tended to be less tolerant to leaf damage. Our results suggest that tolerance trades off with traits that allow mostly annual, monocarpic Streptanthus (s.l.) to persist in drought-prone conditions but is largely unrelated to resistance to herbivores. Our study highlights a need for a new framework for tolerance to herbivory that explicitly acknowledges that the relationship among tolerance, resistance, and traits that ameliorate abiotic stress.
Assuntos
Adaptação Fisiológica , Evolução Biológica , Secas , Plantas , Herbivoria , Fenótipo , Filogenia , Folhas de PlantaRESUMO
Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning.