Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 95(3): 660-667, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952056

RESUMO

BACKGROUND: Infants with a congenital diaphragmatic hernia (DH) have underdeveloped lungs and require mechanical ventilation after birth, but the optimal approach is unknown. We hypothesised that sustained inflation (SI) increases lung aeration in newborn kittens with a DH. METHODS: In pregnant New Zealand white rabbits, a left-sided DH was induced in two fetal kittens per doe at 24-days gestation (term = 32 days); litter mates acted as controls. DH and control kittens were delivered by caesarean section at 30 days, intubated and mechanically ventilated (7-10 min) with either an SI followed by intermittent positive pressure ventilation (IPPV) or IPPV throughout. The rate and uniformity of lung aeration was measured using phase-contrast X-ray imaging. RESULTS: Lung weights in DH kittens were ~57% of controls. An SI increased the rate and uniformity of lung aeration in DH kittens, compared to IPPV, and increased dynamic lung compliance in both control and DH kittens. However, this effect of the SI was lost when ventilation changed to IPPV. CONCLUSION: While an SI improved the rate and uniformity of lung aeration in both DH and control kittens, greater consideration of the post-SI ventilation strategy is required to sustain this benefit. IMPACT: Compared to intermittent positive pressure ventilation (IPPV), an initial sustained inflation (SI) increased the rate and uniformity of lung aeration after birth. However, this initial benefit is rapidly lost following the switch to IPPV. The optimal approach for ventilating CDH infants at birth is unknown. While an SI improves lung aeration in immature lungs, its effect on the hypoplastic lung is unknown. This study has shown that an SI greatly improves lung aeration in the hypoplastic lung. This study will guide future studies examining whether an SI can improve lung aeration in infants with a CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Humanos , Coelhos , Animais , Gravidez , Feminino , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/terapia , Animais Recém-Nascidos , Cesárea , Pulmão/diagnóstico por imagem , Respiração Artificial/métodos
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836606

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Assuntos
Hipertensão Arterial Pulmonar/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Carbazóis/efeitos adversos , Progressão da Doença , Medicamentos de Ervas Chinesas/efeitos adversos , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/sangue , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Linfócitos T/metabolismo
3.
Clin Sci (Lond) ; 137(1): 105-108, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36601782

RESUMO

Epigenome changes in chronic states of cardiovascular stress including diabetes, pressure overload and cardiomyopathies frequently involve changes in open chromatin and post-translation modifications of histone lysine residues at specific amino acid positions by acetylation, methylation and phosphorylation. Since the discovery of Set7 as an important regulator of histone H3 lysine 4 methylation state, there has been wide interest in its role in cardiovascular remodeling and cardiac dysfunction. Recent transcriptome and Fourier transform infrared spectroscopy analyses and in vivo assessments of cardiac function by Lunardon and colleagues now reveal a clear role of Set7 in the regulation of the extracellular matrix composition and cardiac hypertrophy in response to chronic isoproterenol induced cardiac stress.


Assuntos
Histona-Lisina N-Metiltransferase , Lisina , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Histonas/metabolismo , Cromatina , Metilação
4.
J Physiol ; 600(12): 2919-2938, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551673

RESUMO

In resistance arteries, endothelium-dependent hyperpolarization (EDH)-mediated vasodilatation is depressed in diabetes. We hypothesized that downregulation of KCa channel derived EDH reduces exercise-induced vasodilatation and blood flow redistribution in diabetes. To test this hypothesis, we evaluated vascular function in response to hindlimb muscle contraction, and the contribution of KCa channels in anaesthetised ZFDM, metabolic disease rats with type 2 diabetes. We also tested whether exercise training ameliorated the vascular response. Using in vivo microangiography, the hindlimb vasculature was visualized before and after rhythmic muscle contraction (0.5 s tetanus every 3 s, 20 times) evoked by sciatic nerve stimulation (40 Hz). Femoral blood flow of the contracting hindlimb was simultaneously measured by an ultrasonic flowmeter. The contribution of KCa channels was investigated in the presence and absence of apamin and charybdotoxin. We found that vascular and blood flow responses to muscle contraction were significantly impaired at the level of small artery segments in ZFDM fa/fa rats compared to its lean control fa/+ rats. The contribution of KCa channels was also smaller in fa/fa than in fa/+ rats. Low-intensity exercise training for 12 weeks in fa/fa rats demonstrated minor changes in the vascular and blood flow response to muscle contraction. However, the KCa-derived component in the response to muscle contraction was much greater in exercise trained than in sedentary fa/fa rats. These data suggest that exercise training increases the contribution of KCa channels among endothelium-dependent vasodilatory mechanisms to maintain vascular and blood flow responses to muscle contraction in this metabolic disease rat model. KEY POINTS: Microvascular dysfunction in type 2 diabetes impairs blood flow redistribution during exercise and limits the performance of skeletal muscle and may cause early fatigability. Endothelium-dependent hyperpolarization (EDH), which mediates vasodilatation in resistance arteries, is known to be depressed in animals with diabetes. Here, we report that low-intensity exercise training in ZFDM rats increased the KCa channel-derived component in the vasodilator responses to muscle contraction compared to that in sedentary rats, partly as a result of the increase in KCNN3 expression. These results suggest that low-intensity exercise training improves blood flow redistribution in contracting skeletal muscle in metabolic disease with diabetes via upregulation of EDH.


Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular , Animais , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/fisiologia , Contração Muscular , Ratos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
5.
Pediatr Res ; 91(7): 1686-1694, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34294868

RESUMO

BACKGROUND: Preterm infants are commonly supported with 4-8 cm H2O continuous positive airway pressures (CPAP), although higher CPAP levels may improve functional residual capacity (FRC). METHODS: Preterm rabbits delivered at 29/32 days (~26-28 weeks human) gestation received 0, 5, 8, 12, 15 cm H2O of CPAP or variable CPAP of 15 to 5 or 15 to 8 cm H2O (decreasing ~2 cm H2O/min) for up to 10 min after birth. RESULTS: FRC was lower in the 0 (6.8 (1.0-11.2) mL/kg) and 5 (10.1 (1.1-16.8) mL/kg) compared to the 15 (18.8 (10.9-22.4) mL/kg) cm H2O groups (p = 0.003). Fewer kittens achieved FRC > 15 mL/kg in the 0 (20%), compared to 8 (36%), 12 (60%) and 15 (73%) cm H2O groups (p = 0.008). While breathing rates were not different (p = 0.096), apnoea tended to occur more often with CPAP < 8 cm H2O (p = 0.185). CPAP belly and lung bulging rates were similar whereas pneumothoraces were rare. Lowering CPAP from 15 to 5, but not 15 to 8 cm H2O, decreased FRC and breathing rates. CONCLUSION: In all, 15 cm H2O of CPAP improved lung aeration and reduced apnoea, but did not increase the risk of lung over-expansion, pneumothorax or CPAP belly immediately after birth. FRC and breathing rates were maintained when CPAP was decreased to 8 cm H2O. IMPACT: Although preterm infants are commonly supported with 4-8 cm H2O CPAP at birth, preclinical studies have shown that higher PEEP levels improve lung aeration. In this study, CPAP levels of 15 cm H2O improved lung aeration and reduced apnoea in preterm rabbit kittens immediately after birth. In all, 15 cm H2O CPAP did not increase the risk of lung over-expansion (indicated by bulging between the ribs), pneumothorax, or CPAP belly. These results can be used when designing future studies on CPAP strategies for preterm infants in the delivery room.


Assuntos
Apneia , Pneumotórax , Animais , Pressão Positiva Contínua nas Vias Aéreas , Capacidade Residual Funcional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Coelhos
6.
Circ Res ; 127(11): 1384-1400, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32907486

RESUMO

RATIONALE: Diabetic heart disease (DHD) is a debilitating manifestation of type 2 diabetes mellitus. Exercise has been proposed as a potential therapy for DHD, although the effectiveness of exercise in preventing or reversing the progression of DHD remains controversial. Cardiac function is critically dependent on the preservation of coronary vascular function. OBJECTIVE: We aimed to elucidate the effectiveness and mechanisms by which exercise facilitates coronary and cardiac-protection during the onset and progression of DHD. METHODS AND RESULTS: Diabetic db/db and nondiabetic mice, with or without underlying cardiac dysfunction (16 and 8 weeks old, respectively) were subjected to either moderate-intensity exercise or high-intensity exercise for 8 weeks. Subsequently, synchrotron microangiography, immunohistochemistry, Western blot, and real-time polymerase chain reaction were used to assess time-dependent changes in cardiac and coronary structure and function associated with diabetes mellitus and exercise and determine whether these changes reflect the observed changes in cardiac-enriched and vascular-enriched microRNAs (miRNAs). We show that, if exercise is initiated from 8 weeks of age, both moderate-intensity exercise and high-intensity exercise prevented the onset of coronary and cardiac dysfunction, apoptosis, fibrosis, microvascular rarefaction, and disruption of miRNA signaling, as seen in the nonexercised diabetic mice. Conversely, the cardiovascular benefits of moderate-intensity exercise were absent if the exercise was initiated after the diabetic mice had already established cardiac dysfunction (ie, from 16 weeks of age). The experimental silencing or upregulation of miRNA-126 activity suggests the mechanism underpinning the cardiovascular benefits of exercise were mediated, at least in part, through tissue-specific miRNAs. CONCLUSIONS: Our findings provide the first experimental evidence for the critical importance of early exercise intervention in ameliorating the onset and progression of DHD. Our results also suggest that the beneficial effects of exercise are mediated through the normalization of cardiovascular-enriched miRNAs, which are dysregulated in DHD.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Terapia por Exercício , MicroRNAs/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/genética , Miocárdio/patologia , Corrida , Transdução de Sinais , Fatores de Tempo , Função Ventricular Esquerda , Remodelação Ventricular
7.
Am J Physiol Heart Circ Physiol ; 320(3): H1021-H1036, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481696

RESUMO

Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.


Assuntos
Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Síncrotrons , Vasodilatação , Disfunção Ventricular Direita/diagnóstico por imagem , Animais , Anti-Hipertensivos/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Indóis , Monocrotalina , Valor Preditivo dos Testes , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Pirróis , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular
8.
Cardiovasc Diabetol ; 20(1): 50, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618724

RESUMO

BACKGROUND: Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS: Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS: Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION: We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.


Assuntos
Acetilcolina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Glucose/metabolismo , Ventrículos do Coração/metabolismo , Acetilcolinesterase/metabolismo , Idoso , Animais , Estudos de Casos e Controles , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Muscarínico M2/metabolismo , Simportadores/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
9.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33480422

RESUMO

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Angiografia Coronária , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Metoprolol/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/administração & dosagem
10.
Clin Exp Pharmacol Physiol ; 48(12): 1685-1692, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411314

RESUMO

Serotonin (5-HT) accumulates in the heart during myocardial ischaemia and induces deleterious effects on the cardiomyocytes. We aimed to investigate whether carrier-mediated 5-HT efflux contributed to the increase in interstitial 5-HT level during ischaemia. Using microdialysis technique applied to the heart of anaesthetised Wistar rats, myocardial interstitial concentration of 5-HT was measured by electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD) while simultaneously various pharmacological agents, which create a similar condition to ischaemia, were locally administered by reverse-microdialysis. Sodium cyanide-induced chemical anoxia increased dialysate 5-HT concentration. A similar increase in dialysate 5-HT concentration was induced by ouabain, an inhibitor of sodium-potassium ATPase and reserpine, an inhibitor of vesicular monoamine transporter. Fluoxetine, a selective serotonin reuptake inhibitor raised the baseline level of 5-HT, and neither sodium cyanide nor the combination of ouabain and reserpine induced further increase in 5-HT in the presence of fluoxetine. The results indicate that reverse transport of 5-HT via SERT, which is caused by an impaired ion gradient, contributes to the rise in interstitial level of 5-HT during ischaemia suggesting carrier-mediated 5-HT efflux occurs in the heart in vivo.


Assuntos
Serotonina
11.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R517-R525, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903042

RESUMO

Vagal nerve stimulation (VNS) has been explored as a potential therapy for chronic heart failure. The contribution of the afferent pathway to myocardial interstitial acetylcholine (ACh) release during VNS has yet to be clarified. In seven anesthetized Wistar-Kyoto rats, we implanted microdialysis probes in the left ventricular free wall and measured the myocardial interstitial ACh release during right VNS with the following combinations of stimulation frequency (F in Hz) and voltage readout (V in volts): F0V0 (no stimulation), F5V3, F20V3, F5V10, and F20V10. F5V3 did not affect the ACh level. F20V3, F5V10, and F20V10 increased the ACh level to 2.83 ± 0.47 (P < 0.01), 4.31 ± 1.09 (P < 0.001), and 4.33 ± 0.82 (P < 0.001) nM, respectively, compared with F0V0 (1.76 ± 0.22 nM). After right vagal afferent transection (rVAX), F20V3 and F20V10 increased the ACh level to 2.90 ± 0.53 (P < 0.001) and 3.48 ± 0.63 (P < 0.001) nM, respectively, compared with F0V0 (1.61 ± 0.19 nM), but F5V10 did not (2.11 ± 0.24 nM). The ratio of the ACh levels after rVAX relative to before was significantly <100% in F5V10 (59.4 ± 8.7%) but not in F20V3 (102.0 ± 8.7%). These results suggest that high-frequency and low-voltage stimulation (F20V3) evoked the ACh release mainly via direct activation of the vagal efferent pathway. By contrast, low-frequency and high-voltage stimulation (F5V10) evoked the ACh release in a manner dependent on the vagal afferent pathway.


Assuntos
Acetilcolina/metabolismo , Vias Aferentes/fisiologia , Miocárdio/metabolismo , Estimulação do Nervo Vago , Animais , Hemodinâmica , Masculino , Fibras Nervosas Mielinizadas/fisiologia
12.
Cardiovasc Diabetol ; 19(1): 24, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093680

RESUMO

BACKGROUND: Obesity, hypertension and prediabetes contribute greatly to coronary artery disease, heart failure and vascular events, and are the leading cause of mortality and morbidity in developed societies. Salt sensitivity exacerbates endothelial dysfunction. Herein, we investigated the effect of chronic glucagon like peptide-1 (GLP-1) receptor activation on the coronary microcirculation and cardiac remodeling in Zucker rats on a high-salt diet (6% NaCl). METHODS: Eight-week old Zucker lean (+/+) and obese (fa/fa) rats were treated with vehicle or liraglutide (LIRA) (0.1 mg/kg/day, s.c.) for 8 weeks. Systolic blood pressure (SBP) was measured using tail-cuff method in conscious rats. Myocardial function was assessed by echocardiography. Synchrotron contrast microangiography was then used to investigate coronary arterial vessel function (vessels 50-350 µm internal diameter) in vivo in anesthetized rats. Myocardial gene and protein expression levels of vasoactive factors, inflammatory, oxidative stress and remodeling markers were determined by real-time PCR and Western blotting. RESULTS: We found that in comparison to the vehicle-treated fa/fa rats, rats treated with LIRA showed significant improvement in acetylcholine-mediated vasodilation in the small arteries and arterioles (< 150 µm diameter). Neither soluble guanylyl cyclase or endothelial NO synthase (eNOS) mRNA levels or total eNOS protein expression in the myocardium were significantly altered by LIRA. However, LIRA downregulated Nox-1 mRNA (p = 0.030) and reduced ET-1 protein (p = 0.044) expression. LIRA significantly attenuated the expressions of proinflammatory and profibrotic associated biomarkers (NF-κB, CD68, IL-1ß, TGF-ß1, osteopontin) and nitrotyrosine in comparison to fa/fa-Veh rats, but did not attenuate perivascular fibrosis appreciably. CONCLUSIONS: In a rat model of metabolic syndrome, chronic LIRA treatment improved the capacity for NO-mediated dilation throughout the coronary macro and microcirculations and partially normalized myocardial remodeling independent of changes in body mass or blood glucose.


Assuntos
Doença da Artéria Coronariana/prevenção & controle , Circulação Coronária/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Resistência à Insulina , Liraglutida/farmacologia , Microcirculação/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Zucker , Cloreto de Sódio na Dieta , Remodelação Ventricular/efeitos dos fármacos
13.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669609

RESUMO

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Assuntos
Diástole , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Inflamação/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/fisiopatologia , Citoesqueleto de Actina/metabolismo , Animais , Conectina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Complexos Multienzimáticos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/metabolismo , Fosforilação , Ratos Wistar , Superóxidos/metabolismo , Vasodilatação/efeitos dos fármacos
14.
J Pharmacol Exp Ther ; 369(3): 375-388, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910920

RESUMO

Metabolic syndrome is a common risk factor in chronic kidney disease. We investigated whether liraglutide [(LIRA), a glucagon-like peptide-1 receptor (GLP-1R) agonist] treatment improved renal vascular function and renal remodeling in male Zucker rats on a high-salt diet (6% NaCl). Zucker lean (+/+) and obese (fa/fa) rats (8 weeks old) were treated with vehicle or LIRA (0.1 mg/kg per day) for 8 weeks on a high-salt diet. The glomerular filtration rate (GFR) was measured at 0 and 8 weeks using the fluorescein isothiocyanate/sinistrin method in conscious rats. We used X-ray microangiography to measure renal arterial vessel diameter (70-350 µm) and vessel number in vivo in anesthetized rats. Renal protein expression levels of nitrotyrosine, CD-68, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), transforming growth factor-ß1, cyclooxygenase-2, and GLP-1R were assessed by western blotting. Renal gene expressions were determined by real-time polymerase chain reaction. In contrast to vehicle-treated rats, fa/fa-LIRA rats improved GFR, nitric oxide (NO)-mediated vasodilation in response to acetylcholine and sodium nitroprusside in small arterial vessels (<200 µm diameter). LIRA treatment increased vessel responsivity to NO donors in comparison with vehicle treatment. Increases in the expressions of proinflammatory, profibrotic, and oxidative stress related genes in fa/fa rats relative to +/+ were unaltered by LIRA, other than a trend toward attenuation of VCAM-1 gene expression. However, LIRA treatment increased protein expressions of eNOS (P = 0.014) and VEGF (P = 0.063), while reducing glomerular macrophage infiltration in comparison with vehicle-treated fa/fa rats. Low-dose LIRA treatment improved renal vascular function through amelioration of vascular dysfunction and improved NO-mediated dilation of small intrarenal arteries and arterioles and a reduction in renal inflammation.


Assuntos
Rim/citologia , Rim/efeitos dos fármacos , Liraglutida/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Endotélio/patologia , Fibrose , Junções Comunicantes/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hemodinâmica/efeitos dos fármacos , Rim/patologia , Rim/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Zucker , Fator A de Crescimento do Endotélio Vascular/genética
15.
Am J Physiol Renal Physiol ; 314(5): F715-F725, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931522

RESUMO

Vascular topology and morphology are critical in the regulation of blood flow and the transport of small solutes, including oxygen, carbon dioxide, nitric oxide, and hydrogen sulfide. Renal vascular morphology is particularly challenging, since many arterial walls are partially wrapped by the walls of veins. In the absence of a precise characterization of three-dimensional branching vascular geometry, accurate computational modeling of the intrarenal transport of small diffusible molecules is impossible. An enormous manual effort was required to achieve a relatively precise characterization of rat renal vascular geometry, highlighting the need for an automated method for analysis of branched vasculature morphology to allow characterization of the renal vascular geometry of other species, including humans. We present a semisupervised method for three-dimensional morphometric analysis of renal vasculature images generated by computed tomography. We derive quantitative vascular attributes important to mass transport between arteries, veins, and the renal tissue and present methods for their computation for a three-dimensional vascular geometry. To validate the algorithm, we compare automated vascular estimates with subjective manual measurements for a portion of rabbit kidney. Although increased image resolution can improve outcomes, our results demonstrate that the method can quantify the morphological characteristics of artery-vein pairs, comparing favorably with manual measurements. Similar to the rat, we show that rabbit artery-vein pairs become less intimate along the course of the renal vasculature, but the total wrapped mass transfer coefficient increases and then decreases. This new method will facilitate new quantitative physiological models describing the transport of small molecules within the kidney.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Imageamento Tridimensional/métodos , Rim/irrigação sanguínea , Flebografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Artéria Renal/diagnóstico por imagem , Veias Renais/diagnóstico por imagem , Animais , Valor Preditivo dos Testes , Coelhos , Ratos , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado
16.
J Physiol ; 595(5): 1593-1606, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27902842

RESUMO

KEY POINTS: Lung aeration at birth significantly increases pulmonary blood flow, which is unrelated to increased oxygenation or other spatial relationships that match ventilation to perfusion. Using simultaneous X-ray imaging and angiography in near-term rabbits, we investigated the relative contributions of the vagus nerve and oxygenation to the increase in pulmonary blood flow at birth. Vagal denervation inhibited the global increase in pulmonary blood flow induced by partial lung aeration, although high inspired oxygen concentrations can partially mitigate this effect. The results of the present study indicate that a vagal reflex may mediate a rapid global increase in pulmonary blood flow in response to partial lung aeration. ABSTRACT: Air entry into the lungs at birth triggers major cardiovascular changes, including a large increase in pulmonary blood flow (PBF) that is not spatially related to regional lung aeration. To investigate the possible underlying role of a vagally-mediated stimulus, we used simultaneous phase-contrast X-ray imaging and angiography in near-term (30 days of gestation) vagotomized (n = 15) or sham-operated (n = 15) rabbit kittens. Rabbits were imaged before ventilation, when one lung was ventilated (unilateral) with 100% nitrogen (N2 ), air or 100% oxygen (O2 ), and after all kittens were switched to unilateral ventilation in air and then ventilation of both lungs using air. Compared to control kittens, vagotomized kittens had little or no increase in PBF in both lungs following unilateral ventilation when ventilation occurred with 100% N2 or with air. However, relative PBF did increase in vagotomized animals ventilated with 100% O2 , indicating the independent stimulatory effects of local oxygen concentration and autonomic innervation on the changes in PBF at birth. These findings demonstrate that vagal denervation inhibits the previously observed increase in PBF with partial lung aeration, although high inspired oxygen concentrations can partially mitigate this effect.


Assuntos
Circulação Pulmonar/fisiologia , Nervo Vago/fisiologia , Angiografia , Animais , Denervação , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Artéria Pulmonar/fisiologia , Coelhos , Respiração Artificial , Vagotomia , Nervo Vago/cirurgia
17.
Am J Physiol Heart Circ Physiol ; 312(1): H60-H67, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793854

RESUMO

The aim of this study was to examine the accumulation of serotonin (5-HT) and degradation of 5-HT taken up into cells in the ischemic region during myocardial ischemia-reperfusion. Using microdialysis technique in anesthetized rats, we monitored myocardial interstitial levels of 5-HT and its metabolite produced by monoamine oxidase (MAO), 5-hydroxyindole acetic acid (5-HIAA), during 30-min coronary occlusion followed by 45-min reperfusion, and investigated the effects of local administration of the MAO inhibitor pargyline and the 5-HT uptake inhibitor fluoxetine. In the vehicle group, the dialysate 5-HT concentration increased from 1.3 ± 0.2 nM at baseline to 29.6 ± 2.8 nM at 22.5-30 min of occlusion, but the dialysate 5-HIAA concentration did not change from baseline (9.9 ± 1.1 nM). Upon reperfusion, the dialysate 5-HT concentration increased further to a peak (34.2 ± 4.2 nM) at 0-7.5 min and then declined. The dialysate 5-HIAA concentration increased to 31.9 ± 5.2 nM at 7.5-15 min of reperfusion and maintained this high level until 45 min. Pargyline markedly suppressed the increase in dialysate 5-HIAA concentration after reperfusion and increased the averaged dialysate 5-HT concentration during the reperfusion period. Fluoxetine suppressed the increase in dialysate 5-HT concentration during occlusion but did not change dialysate 5-HT or 5-HIAA concentration after reperfusion. During ischemia, 5-HT secreted from ischemic tissues accumulates but 5-HT degradation by MAO is suppressed. After reperfusion, degradation of 5-HT taken up into cells is enhanced and contributes to the clearance of accumulated 5-HT. This degradation following cellular uptake is dependent on MAO activity but not the fluoxetine-sensitive uptake transporter. NEW & NOTEWORTHY: By monitoring myocardial interstitial levels of 5-HT and its metabolite, 5-hydroxyindole acetic acid, we investigated 5-HT kinetics during myocardial ischemia-reperfusion. 5-HT accumulates but 5-HT degradation is suppressed during ischemia. After reperfusion, 5-HT degradation is enhanced and this degradation is dependent on monoamine oxidase activity but not fluoxetine-sensitive uptake transporter.


Assuntos
Oclusão Coronária/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Serotonina/metabolismo , Animais , Fluoxetina/farmacologia , Masculino , Microdiálise , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Pargilina/farmacologia , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
18.
J Synchrotron Radiat ; 24(Pt 5): 1039-1047, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862627

RESUMO

Tumor vasculature is characterized by morphological and functional abnormalities. However, analysis of the dynamics in blood flow is still challenging because of limited spatial and temporal resolution. Synchrotron radiation (SR) microangiography above the K-edge of the iodine contrast agent can provide high-contrast imaging of microvessels in time orders of milliseconds. In this study, mice bearing the human breast cancer cell lines MDAMB231 and NOTCH4 overexpression in MDAMB231 (MDAMB231NOTCH4+) and normal mice were assessed using SR microangiography. NOTCH is transmembrane protein that has crucial roles for vasculogenesis, angiogenesis and tumorigenesis, and NOTCH4 is considered to be a cause of high-flow arteriovenous shunting. A subgroup of mice received intravenous eribulin treatment, which is known to improve intratumor core circulation (MDAMB231_eribulin). Microvessel branches from approximately 200 µm to less than 20 µm in diameter were observed within the same visual field. The mean transition time (MTT) was measured as a dynamic parameter and quantitative analysis was performed. MTT in MDAMB231 was longer than that in normal tissue, and MDAMB231NOTCH4+ showed shorter MTT [5.0 ± 1.4 s, 3.6 ± 1.0 s and 3.6 ± 1.1 s (mean ± standard deviation), respectively]. After treatment, average MTT was correlated to tumor volume (r = 0.999) in MDAMB231_eribulin, while in contrast there was no correlation in MDAMB231 (r = -0.026). These changes in MTT profile are considered to be driven by the modulation of intratumoral circulation dynamics. These results demonstrate that a SR microangiography approach enables quantitative analysis of morphological and dynamic characteristics of tumor vasculature in vivo. Further studies will reveal new findings concerning vessel function in tumors.


Assuntos
Angiografia/métodos , Neoplasias da Mama/irrigação sanguínea , Hemodinâmica , Síncrotrons , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Feminino , Xenoenxertos , Humanos , Camundongos , Receptor Notch4/metabolismo
19.
Cardiovasc Diabetol ; 16(1): 10, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086863

RESUMO

Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.


Assuntos
Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/prevenção & controle , Exercício Físico/fisiologia , MicroRNAs/fisiologia , Glicemia/fisiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/fisiopatologia , Humanos , Hiperglicemia/sangue , Hiperglicemia/fisiopatologia , Hiperglicemia/terapia , Resistência à Insulina/fisiologia
20.
Pediatr Res ; 82(3): 536-543, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28399114

RESUMO

BackgroundA congenital diaphragmatic hernia (DH) can result in severe lung hypoplasia that increases the risk of morbidity and mortality after birth; however, little is known about the cardiorespiratory transition at birth.MethodsUsing phase-contrast X-ray imaging and angiography, we examined the cardiorespiratory transition at birth in rabbit kittens with DHs. Surgery was performed on pregnant New Zealand white rabbits (n=18) at 25 days' gestation to induce a left-sided DH. Kittens were delivered at 30 days' gestation, intubated, and ventilated to achieve a tidal volume (Vt) of 8 ml/kg in control and 4 ml/kg in DH kittens while they were imaged.ResultsFunctional residual capacity (FRC) recruitment and Vt in the hypoplastic left lung were markedly reduced, resulting in a disproportionate distribution of FRC into the right lung. Following lung aeration, relative pulmonary blood flow (PBF) increased equally in both lungs, and the increase in pulmonary venous return was similar in both control and DH kittens.ConclusionThese findings indicate that nonuniform lung hypoplasia caused by DH alters the distribution of ventilation away from hypoplastic and into normally grown lung regions. During transition, the increase in PBF and pulmonary venous return, which is vital for maintaining cardiac output, is not affected by lung hypoplasia.


Assuntos
Hérnias Diafragmáticas Congênitas/fisiopatologia , Pulmão/irrigação sanguínea , Ventilação Pulmonar , Animais , Animais Recém-Nascidos , Feminino , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/patologia , Gravidez , Coelhos , Fluxo Sanguíneo Regional , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa