Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(18): e0116621, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069549

RESUMO

Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.


Assuntos
Aminoácidos , Ebolavirus , Epitopos de Linfócito T , Glicoproteínas , Doença pelo Vírus Ebola , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Ebola/genética , Ebolavirus/genética , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Camundongos , Proteínas Recombinantes , Vaccinia virus , Vesiculovirus
2.
Curr Top Microbiol Immunol ; 440: 187-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32638114

RESUMO

Developing traditional viral vaccines for infectious diseases usually takes years, as these are usually produced either by chemical inactivation of the virus or attenuation of the pathogen, processes that can take considerable time to validate and also require the live pathogen. With the advent of nucleic-acid vaccines (DNA and mRNA), the time to vaccine design and production is considerably shortened, since once the platform has been established, all that is required is the sequence of the antigen gene, its synthesis and insertion into an appropriate expression vector; importantly, no infectious virus is required. mRNA vaccines have some advantages over DNA vaccines, such as expression in non-dividing cells and the absence of the perceived risk of integration into host genome. Also, generally lower doses are required to induce the immune response. Based on experience in recent clinical trials, mRNA-based vaccines are a promising novel platform that might be useful for the development of vaccines against emerging pandemic infectious diseases. This chapter discusses some of the specific issues that mRNA vaccines raise with respect to production, quality, safety and efficacy, and how they have been addressed so as to allow their evaluation in clinical trials.


Assuntos
Doenças Transmissíveis Emergentes , Vacinas de DNA , Vacinas Virais , Humanos , Vacinas de mRNA , Vacinas Virais/genética , Vacinas de DNA/genética , RNA Mensageiro/genética , Vacinas Sintéticas/genética
3.
Biologicals ; 84: 101724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37977030

RESUMO

To evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cell lines, we have been establishing in vivo assays to quantify the oncogenic activity of DNA. We had generated three oncogene-expression plasmids: pMSV-T24-H-ras, which expresses activated H-ras; pMSV-c-myc, which expresses c-myc; and pMSV-T24-H-ras/MSV-c-myc, which expresses both oncogenes. Tumors were induced in mice by pMSV-T24-H-ras plus pMSV-c-myc or by pMSV-T24-H-ras/MSV-c-myc. Because newborn hamsters and newborn rats have been recommended for oncogenicity testing of the DNA from tumorigenic mammalian cell-substrates used for vaccine production, we evaluated their sensitivity. Newborn hamsters and rats were inoculated with different doses of pMSV-T24-H-ras/MSV-c-myc to determine their sensitivity to tumor induction and with the single-oncogene-expression plasmids to determine whether single oncogenes could induce tumors. Newborn rats were more sensitive than newborn hamsters, and activated H-ras but not c-myc induced tumors in newborns of both rodent species. DNA from four cell lines established from tumors induced by pMSV-T24-H-ras/MSV-c-myc was inoculated into newborn rats. Because no tumors were induced by this cellular DNA, which should be optimal as it contains both oncogenes linked and present in several copies, we conclude that available in vivo models are not sensitive enough to detect the oncogenicity of cellular DNA.


Assuntos
DNA , Neoplasias , Cricetinae , Ratos , Camundongos , Animais , Animais Recém-Nascidos , DNA/genética , DNA/metabolismo , Oncogenes , Plasmídeos/genética , Neoplasias/metabolismo , Transformação Celular Neoplásica , Transfecção , Mamíferos/metabolismo
4.
J Virol ; 86(13): 7028-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22514351

RESUMO

Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution.


Assuntos
Gangliosidose GM1/metabolismo , Receptores Virais/metabolismo , Vírus 40 dos Símios/fisiologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Tropismo Viral , Ligação Viral , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Vírus 40 dos Símios/genética
5.
Virol J ; 10: 195, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23767960

RESUMO

BACKGROUND: Few studies have used quantitative polymerase chain reaction (qPCR) as an approach to measure virus neutralization assay endpoints. Its lack of use may not be surprising considering that sample nucleic acid extraction and purification can be expensive, labor-intensive, and rate-limiting. METHODS: Virus/antibody mixtures were incubated for one hour at 37°C and then transferred to Vero cell monolayers in a 96-well plate format. At 24 (or 48) hours post-infection, we used a commercially available reagent to prepare cell lysates amenable to direct analysis by one-step SYBR Green quantitative reverse transcription PCR using primers specific for the RSV-N gene, thereby obviating the need for cumbersome RNA extraction and purification. The neutralization titer was defined as the reciprocal of the highest dilution needed to inhibit the PCR signal by 90% when compared with the mean value observed in virus control wells in the absence of neutralizing antibodies. RESULTS: We have developed a qPCR-based neutralization assay for human respiratory syncytial virus. Due to the sensitivity of qPCR in detecting virus replication, endpoints may be assessed as early as 24 hours post-infection. In addition, the dynamic range of qPCR provides a basis for the assay to be relatively robust to perturbations in input virus dose (i.e., the assay is in compliance with the Percentage Law). CONCLUSIONS: This qPCR-based neutralization assay is suitable for automated high-throughput applications. In addition, our experimental approach may be generalizable for the rapid development of neutralization assays for other virus families.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Testes de Neutralização/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus Sincicial Respiratório Humano/imunologia , Carga Viral/métodos , Animais , Humanos , Coelhos
6.
PLoS One ; 18(12): e0293406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060571

RESUMO

The AGMK1-9T7 cell line has been used to study neoplasia in tissue culture. By passage in cell culture, these cells evolved to become tumorigenic and metastatic in immunodeficient mice at passage 40. Of the 20 x 106 kidney cells originally plated, less than 2% formed the colonies that evolved to create this cell line. These cells could be the progeny of some type of kidney progenitor cells. To characterize these cells, we documented their renal lineage by their expression of PAX-2 and MIOX, detected by indirect immunofluorescence. These cells assessed by flow-cytometry expressed high levels of CD44, CD73, CD105, Sca-1, and GLI1 across all passages tested; these markers have been reported to be expressed by renal progenitor cells. The expression of GLI1 was confirmed by immunofluorescence and western blot analysis. Cells from passages 13 to 23 possessed the ability to differentiate into adipocytes, osteoblasts, and chondrocytes; after passage 23, their ability to form these cell types was lost. These data indicate that the cells that formed the AGMK1-9T7 cell line were GLI1+ perivascular, kidney, progenitor cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco , Neoplasias/metabolismo , Rim , Células Cultivadas
7.
PLoS One ; 17(10): e0275394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279283

RESUMO

To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolution of chromosomal DNA copy-number aberrations and miRNA expression in this cell line from passage 1 to the acquisition of a tumorigenic phenotype at passage 40. We demonstrated the use of a human microarray platform for DNA copy-number profiling of AGMK1-9T7 cells using knowledge of synteny to 'recode' data from human chromosome coordinates to those of the African green monkey. This approach revealed the accumulation of DNA copy-number gains and losses in AGMK1-9T7 cells from passage 3 to passage 40, which spans the period in which neoplastic transformation occurred. These alterations occurred in the sequences of genes regulating DNA copy-number imbalance of several genes that regulate endothelial cell angiogenesis, survival, migration, and proliferation. Regarding miRNA expression, 195 miRNAs were up- or down-regulated at passage 1 at levels that appear to be biologically relevant (i.e., log2 fold change >2.0 (q<0.05)). At passage 10, the number of up/down-regulated miRNAs fell to 63; this number increased to 93 at passage 40. Principal-component analysis grouped these miRNAs into 3 clusters; miRNAs in sub-clusters of these groups could be correlated with initiation, promotion, and progression, stages that have been described for neoplastic development. Thirty-four of the AGMK1-9T7 miRNAs have been associated with these stages in human cancer. Based on these data, we propose that the evolution of AGMK1-9T7 cells represents a detailed model of neoplasia in vitro.


Assuntos
MicroRNAs , Segunda Neoplasia Primária , Neoplasias , Animais , Humanos , Chlorocebus aethiops , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Carcinogênese/genética , Variações do Número de Cópias de DNA/genética , Aberrações Cromossômicas , Segunda Neoplasia Primária/genética , DNA , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
8.
Vaccines (Basel) ; 9(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498787

RESUMO

The global research and development of mRNA vaccines have been prodigious over the past decade, and the work in this field has been stimulated by the urgent need for rapid development of vaccines in response to an emergent disease such as the current COVID-19 pandemic. Nevertheless, there remain gaps in our understanding of the mechanism of action of mRNA vaccines, as well as their long-term performance in areas such as safety and efficacy. This paper reviews the technologies and processes used for developing mRNA prophylactic vaccines, the current status of vaccine development, and discusses the immune responses induced by mRNA vaccines. It also discusses important issues with regard to the evaluation of mRNA vaccines from regulatory perspectives. Setting global norms and standards for biologicals including vaccines to assure their quality, safety and efficacy has been a WHO mandate and a core function for more than 70 years. New initiatives are ongoing at WHO to arrive at a broad consensus to formulate international guidance on the manufacture and quality control, as well as nonclinical and clinical evaluation of mRNA vaccines, which is deemed necessary to facilitate international convergence of manufacturing and regulatory practices and provide support to National Regulatory Authorities in WHO member states.

9.
Vaccine ; 38(8): 1869-1880, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31987690

RESUMO

Vaccines are everywhere hugely successful but are also under attack. The reason for the latter is the perception by some people that vaccines are unsafe. However that may be, vaccine safety, life any other scientific subject, must be constantly studied. It was from this point of view that a meeting was organized at the Wellcome Trust in London in May 2019 to assess some aspects of vaccine safety as subjects for scientific study. The objective of the meeting was to assess what is known beyond reasonable doubt and conversely what areas need additional studies. Although the meeting could not cover all aspects of vaccine safety science, many of the most important issues were addressed by a group of about 30 experts to determine what is already known and what additional studies are merited to assess the safety of the vaccines currently in use. The meeting began with reviews of the current situation in different parts of the world, followed by reviews of specific controversial areas, including the incidence of certain conditions after vaccination and the safety of certain vaccine components. Lastly, information about the human papillomavirus vaccine was considered because its safety has been particularly challenged by vaccine opponents. The following is a summary of the meeting findings. In addition to this summary, the meeting organizers will explore opportunities to perform studies that would enlarge knowledge of vaccine safety.


Assuntos
Segurança do Paciente , Vacinas , Congressos como Assunto , Humanos , Londres , Vacinação , Vacinas/efeitos adversos
10.
Biologicals ; 37(3): 190-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19285882

RESUMO

The presence of some residual cellular DNA derived from the production-cell substrate in viral vaccines is inevitable. Whether this DNA represents a safety concern, particularly if the cell substrate is derived from a tumor or is tumorigenic, is unknown. DNA has two biological activities that need to be considered. First, DNA can be oncogenic; second, DNA can be infectious. As part of our studies to assess the risk of residual cell-substrate DNA in viral vaccines, we have established assays that can quantify the biological activities of DNA. From data obtained using these assays, we have estimated the risk of an oncogenic or an infectious event from DNA. Because these estimates were derived from the most sensitive assays identified so far, they likely represent worst-case estimates. In addition, methods that inactivate the biological activities of DNA can be assessed and estimations of risk reduction by these treatments can be made. In this paper, we discuss our approaches to address potential safety issues associated with residual cellular DNA from neoplastic cell substrates in viral vaccines, summarize the development of assays to quantify the oncogenic and infectivity activities of DNA, and discuss methods to reduce the biological activities of DNA.


Assuntos
DNA/fisiologia , Vacinas Virais , Algoritmos
11.
Biologicals ; 37(4): 259-69, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19457682

RESUMO

All viral vaccines contain contaminating residual DNA derived from the production cell substrate. The potential risk of this DNA, particularly when derived from tumorigenic cells, has been debated for over 40 years. While the major risk has been considered to be the oncogenicity of the DNA, another potential risk is that a genome of an infectious virus is present in this DNA. Such a genome might generate an infectious agent that could establish an infection in vaccine recipients. To determine the quantity of a retroviral provirus in cellular DNA that can establish a productive infection in vitro, we developed a transfection/co-culture system capable of recovering infectious virus from 1 pg of cloned HIV DNA and from 2 microg of cellular DNA from HIV-infected cells. We demonstrate that infectivity can be reduced to below detectable levels either by lowering the median size of the DNA to 350 base pairs or by treatment with beta-propiolactone. From the amount of reduction of infectivity, we calculate that clearance values in excess of 10(7) are attainable with respect to the infectivity associated with residual cell-substrate DNA. Thus, the potential risk associated with DNA can be substantially reduced by degradation or by chemical inactivation.


Assuntos
DNA Viral/análise , DNA Viral/fisiologia , Retroviridae/genética , Retroviridae/patogenicidade , Inativação de Vírus , Vacinas contra a AIDS/genética , Células Cultivadas , Clonagem Molecular , DNA Super-Helicoidal/fisiologia , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Desinfetantes/farmacologia , Endodesoxirribonucleases/metabolismo , Endorribonucleases/metabolismo , Infecções por HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Células Jurkat , Propiolactona/farmacologia , Infecções por Retroviridae/prevenção & controle
12.
Vaccine X ; 1: 100004, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-31384726

RESUMO

Immortalized cell lines used to produce vaccines are expected to be described in terms of their tumorigenicity. However, current in vivo tumorigenicity assays can be time-consuming and results can be equivocal, especially for weakly tumorigenic cells. Basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm mouse tumor, such as Matrigel and Cultrex, consists of laminin, collagen IV, entactin, heparan sulfate, and proteoglycans, as well as biologically active peptides and growth factors. For nearly three decades, BME has been used in cancer research to enhance tumorigenicity assays (both tumor "take" as well as tumor growth are substantially improved). We assessed the feasibility of using BME to facilitate the evaluation of vaccine cell substrate tumorigenicity. Vero cells (WHO 10-87) were serially passaged and banked at every ten passages beginning with p140; for the present study, low-passage Vero cells (Vero LP, originating from cells banked at p140) and high-passage Vero cells (Vero HP, originating from cells banked at p250) were used. In addition, Vero TPX2 and Vero NM1, cell lines established from tumors formed in nude mice by Vero HP cells, as well as other cell lines relevant to vaccine production (HeLa, MDCK, 293, and ARPE-19), were assessed. Female adult athymic nude mice were injected subcutaneously with cells in the absence or presence of BME. We observed that the tumorigenicity of ARPE-19 cells as well as Vero cells below passage 258 (Vero LP and Vero HP; previously characterized as non-tumorigenic or weakly tumorigenic, respectively) was not enhanced by BME. In contrast, BME shortened the latency and decreased the tumor-producing cell dose of HeLa, 293, and MDCK cells as well as the tumorigenic Vero derivatives TPX2 and NM1. Thus, responsiveness to BME may reflect the status of the neoplastic process and possibly serve as a useful trait for better defining the tumorigenic phenotype of cells.

13.
Vaccine ; 35(41): 5481-5486, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28427845

RESUMO

Development of vaccines against highly pathogenic viruses that could also be used as agents of bioterrorism is both a public health issue and a national security priority. Methods that can quantify neutralizing antibodies will likely be crucial in demonstrating vaccine effectiveness, as most licensed viral vaccines are effective due to their capacity to elicit neutralizing antibodies. Assays to determine whether antibodies are neutralizing traditionally involve infectious virus, and the assay most commonly used is the plaque-reduction neutralization test (PRNT). However, when the virus is highly pathogenic, this assay must be done under the appropriate level of containment; for tier one select agents, such as Ebola virus (EBOV), it is performed under Biological Safety Level 4 (BSL-4) conditions. Developing high-throughput neutralization assays for these viruses that can be done in standard BSL-2 laboratories should facilitate vaccine development. Our approach is to use a replication-competent hybrid virus whose genome carries the envelope gene from the pathogenic virus on the genetic backbone of a non-pathogenic virus, such as vesicular stomatitis virus (VSV). We have generated hybrid VSVs carrying the envelope genes for several species of ebolavirus. The readout for infectivity is a one-step reverse transcriptase quantitative PCR (RT-qPCR), an approach that we have used for other viruses that allows robustness and adaptability to automation. Using this method, we have shown that neutralization can be assessed within 6-16h after infection. Importantly, the titers obtained in our assay with two characterized antibodies were in agreement with titers obtained in other assays. Finally, although in this paper we describe the VSV platform to quantify neutralizing antibodies to ebolaviruses, the platform should be directly applicable to any virus whose envelope is compatible with VSV biology.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Células Vero , Estomatite Vesicular/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
14.
J Virol Methods ; 135(1): 32-42, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16527364

RESUMO

Mixtures of polyomaviruses can be present in the central nervous system, the gastrointestinal tract, the genitourinary tract, blood, and urban sewage. We have developed 12 primer/probe sets (four per virus) for real-time, quantitative PCR assays (TaqMan) that can specifically detect BKV, JCV, and SV40 genomes present in mixtures of these viruses. The specificities of these primer/probe sets were determined by evaluating their level of interaction with the DNA from other polyomaviruses and their ability to estimate the number of copies of homologous viral DNA in blinded samples of defined mixtures of three polyomaviral DNAs. Three early region and three late region primer/probe sets determined, within a two-fold range, the number of copies of their respective DNAs. Four sets of SV40 primer/probes also detected 1.1-2.4 copies of SV40 DNA per COS-1 cell, cells estimated to contain a single copy of SV40 DNA. Three JCV primer/probe sets detected 3.7-4.2 copies per cell of JCV DNA in the JCV-transformed cell line M1-HR, cells estimated to contain between 0.5 and 1 copy of the JCV genome. We suggest that the virus-specific primer/probe sets in this study be considered sufficiently characterized to initiate the quantification of polyomavirus DNA in biological samples.


Assuntos
DNA Viral/análise , Reação em Cadeia da Polimerase/métodos , Polyomavirus/isolamento & purificação , Animais , Vírus BK/classificação , Vírus BK/genética , Vírus BK/isolamento & purificação , Células COS , Chlorocebus aethiops , Primers do DNA/genética , DNA Viral/genética , Vírus JC/classificação , Vírus JC/genética , Vírus JC/isolamento & purificação , Polyomavirus/classificação , Polyomavirus/genética , Sensibilidade e Especificidade , Vírus 40 dos Símios/classificação , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/isolamento & purificação
15.
Biochim Biophys Acta ; 1614(1): 51-61, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12873765

RESUMO

The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/patogenicidade , Receptores de HIV , Fármacos Anti-HIV/uso terapêutico , Antígenos CD4/química , Antígenos CD4/metabolismo , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Sistemas de Liberação de Medicamentos , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Fusão de Membrana , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de HIV/antagonistas & inibidores , Receptores de HIV/química , Receptores de HIV/metabolismo
16.
Vaccine ; 33(51): 7254-7261, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26552003

RESUMO

Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination and natural infection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citomegalovirus/imunologia , Células Epiteliais/virologia , Fibroblastos/virologia , Testes de Neutralização/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Ensaio de Imunoadsorção Enzimática , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo , Doadores de Tecidos , Adulto Jovem
17.
AIDS Res Hum Retroviruses ; 19(9): 767-78, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14585207

RESUMO

Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.


Assuntos
Ciclinas/farmacologia , HIV-1/efeitos dos fármacos , Proteínas de Ligação a RNA/farmacologia , Ativação Transcricional , Animais , Ciclina T , Quinase 9 Dependente de Ciclina/fisiologia , Sinergismo Farmacológico , Produtos do Gene gag/metabolismo , Produtos do Gene tat/farmacologia , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana
18.
AIDS Res Hum Retroviruses ; 18(5): 353-62, 2002 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11897037

RESUMO

Non-syncytium-inducing (NSI) strains of HIV-1 prevail among most infected children, including pediatric patients who develop advanced disease, severe immune suppression, and die. A study was designed to address the hypothesis that genotypic and/or phenotypic markers can distinguish NSI viruses isolated during early infection from NSI viruses found in advanced disease. Primary HIV-1 isolates, which were obtained from 43 children, adolescents, and adults who displayed a cross-section of clinical disease and immune suppression but were untreated by protease inhibitor antiretroviral therapy, were characterized for replication phenotype in different cell types. Most individuals (81%) harbored NSI viruses and almost half had progressed to advanced disease or severe immune deficiency. About 51% of NSI isolates produced low levels of p24 antigen (median, 142 pg/ml) in monocyte-derived macrophages (MDMs), 31% produced medium levels (median, 1584 pg/ml), and 17% produced high levels (median, 81,548 pg/ml) (p < 0.001). Seven of eight syncytium-inducing isolates also replicated in MDMs and displayed a dual-tropic phenotype that was associated with advanced disease. Replication of NSI viruses in MDMs varied as much as 100- to 1000-fold and was independent of replication in peripheral blood mononuclear cells. Replication in MDMs provided a clear biological feature to distinguish among viruses that were otherwise identical by NSI phenotype, V3 genotype, and CCR5 coreceptor usage. Low-level MDM replication was characteristic of viruses isolated from asymptomatic individuals, including long-term survivors. Enhanced MDM replication was related to morbidity and mortality among patients. Replication levels in MDMs provide a novel prognostic indicator of pathogenic potential by NSI viruses.


Assuntos
Infecções por HIV/virologia , HIV-1/isolamento & purificação , Macrófagos/virologia , Replicação Viral , Síndrome da Imunodeficiência Adquirida/sangue , Síndrome da Imunodeficiência Adquirida/patologia , Síndrome da Imunodeficiência Adquirida/virologia , Adolescente , Adulto , Criança , Pré-Escolar , Técnicas de Cocultura , Estudos de Coortes , Estudos Transversais , DNA Viral/análise , Progressão da Doença , Genótipo , Células Gigantes/virologia , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/sangue , Infecções por HIV/patologia , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Lactente , Monócitos/virologia , Fenótipo , Filogenia , Prognóstico , Proteínas do Envelope Viral/química , Proteínas Virais/genética
19.
Vaccine ; 32(37): 4799-805, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25024114

RESUMO

MicroRNA expression appears to capture the process of neoplastic development in vitro in the VERO line of African green monkey kidney (AGMK) cells (Teferedegne et al. PLoS One 2010;5(12):e14416). In that study, specific miRNA signatures were correlated with the transition, during serial tissue-culture passage, of low-density passaged 10-87 VERO cells from a non-tumorigenic phenotype at passage (p) 148 to a tumorigenic phenotype at p256. In the present study, six miRNAs (miR-376a, miR-654-3p, miR-543, miR-299-3p, miR-134 and miR-369-3p) were chosen from the identified signature miRNAs for evaluation of their use as potential biomarkers to track the progression of neoplastic development in VERO cells. Cells from the 10-87 VERO cell line at passage levels from p148 to p256 were inoculated into newborn and adult athymic nude mice. No tumors were observed in animals inoculated with cells from p148 to p186. In contrast, tumor incidences of 20% developed only in newborn mice that received 10-87 VERO cells at p194, p234 and p256. By qPCR profiling of the signature miRNAs of 10-87 VERO cells from these cell banks, we identified p194 as the level at which signature miRNAs elevated concurrently with the acquisition of tumorigenic phenotype with similar levels expressed beyond this passage. In wound-healing assays at 10-passage intervals between p150 to p250, the cells displayed a progressive increase in migration from p165 to p186; beginning at p194 and higher passages thereafter, the cells exhibited the highest rates of migration. By qPCR analysis, the same signature miRNAs were overexpressed with concomitant acquisition of the tumorigenic phenotype in another lineage of 10-87 VERO cells passaged independently at high density. Correlation between the passages at which the cells expressed a tumorigenic phenotype and the passages representing peaks in expression levels of signature miRNAs indicates that these miRNAs are potential biomarkers for the expression of the VERO cell tumorigenic phenotype.


Assuntos
Biomarcadores , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Células Vero/citologia , Animais , Movimento Celular , Chlorocebus aethiops , Camundongos Nus , Fenótipo
20.
PLoS One ; 9(10): e108926, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302710

RESUMO

As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM), DNA (100 µg) was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA.


Assuntos
Genes myc , Genes ras , Células Matadoras Naturais/patologia , Camundongos/genética , Neoplasias/genética , Plasmídeos/genética , Linfócitos T/patologia , Animais , Linhagem Celular Tumoral , DNA Circular/genética , DNA de Neoplasias/genética , Humanos , Células Matadoras Naturais/metabolismo , Camundongos/fisiologia , Camundongos Transgênicos , Neoplasias/patologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa