Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
PLoS Pathog ; 19(11): e1011792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956198

RESUMO

Melanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKKα/ß, subsequently leading to IRF3 and NF-κB phosphorylation. However, the specific E3 ubiquitin ligase for MDA5 K63-polyubiquitination has not been well characterized. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral immune agents indicates that SARS-CoV-2 escapes from antiviral immune responses via several unknown mechanisms. Here, we report that SARS-CoV-2 nonstructural protein 8 (nsp8) acts as a suppressor of antiviral innate immune and inflammatory responses to promote infection of SARS-CoV-2. It downregulates the expression of type I interferon, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and TRIM4 and impairing TRIM4-mediated MDA5 K63-linked polyubiquitination. Our findings reveal that nsp8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.


Assuntos
COVID-19 , Interferon Tipo I , SARS-CoV-2 , Humanos , COVID-19/genética , Imunidade Inata , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588614

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Interleucina-17/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/farmacologia , Proteômica , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/patologia , Transdução de Sinais , Camundongos Knockout , Sepse/patologia , Calgranulina B/genética , Calgranulina B/metabolismo
4.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749193

RESUMO

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Assuntos
Antígeno CD47 , Progressão da Doença , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Humanos , Animais , Linhagem Celular Tumoral , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Camundongos , Evasão Tumoral , Evasão da Resposta Imune , Microambiente Tumoral/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Estadiamento de Neoplasias
5.
Clin Oral Implants Res ; 35(7): 719-728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38624226

RESUMO

OBJECTS: This study aims to explore the etiology of peri-implantitis by comparing the metabolic profiles in peri-implant crevicular fluid (PICF) from patients with healthy implants (PH) and those with peri-implantitis (PI). MATERIALS AND METHODS: Fifty-six patients were enrolled in this cross-sectional study. PICF samples were collected and analyzed using both non-targeted and targeted metabolomics approaches. The relationship between metabolites and clinical indices including probing depth (PD), bleeding on probing (BOP), and marginal bone loss (MBL) was examined. Additionally, submucosal microbiota was collected and analyzed using 16S rRNA gene sequencing to elucidate the association between the metabolites and microbial communities. RESULTS: Significant differences in metabolic profiles were observed between the PH and PI groups, with 179 distinct metabolites identified. In the PI group, specific amino acids and fatty acids were significantly elevated compared to the PH group. Organic acids including succinic acid, fructose-6-phosphate, and glucose-6-phosphate were markedly higher in the PI group, showing positive correlations with mean PD, BOP, and MBL. Metabolites that increased in the PI group positively correlated with the presence of Porphyromonas and Treponema and negatively with Streptococcus and Haemophilus. CONCLUSIONS: This study establishes a clear association between metabolic compositions and peri-implant condition, highlighting enhanced metabolite activity in peri-implantitis. These findings open avenues for further research into metabolic mechanisms of peri-implantitis and their potential therapeutic implications.


Assuntos
Líquido do Sulco Gengival , Peri-Implantite , Humanos , Peri-Implantite/metabolismo , Peri-Implantite/microbiologia , Líquido do Sulco Gengival/microbiologia , Líquido do Sulco Gengival/metabolismo , Líquido do Sulco Gengival/química , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Idoso , Metaboloma , Adulto , Microbiota
6.
BMC Oral Health ; 24(1): 634, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811896

RESUMO

BACKGROUND: The aim of this study was to assess the outcomes of the combination technique of strip free gingival grafts (SFGG) and xenogeneic collagen matrix (XCM) in augmenting the width of keratinized mucosa (KMW) around dental implants, and compare its efficacy with the historical control group (FGG). METHODS: Thirteen patients with at least one site with KMW ≤ 2 mm after implant surgery were included and received SFGG in combination with XCM. Another thirteen patients with the same inclusion and exclusion criteria from the previous trial received FGG alone. The same outcomes as the previous trial were evaluated. KMW, thickness of keratinized mucosa (KMT), gingival index (GI) and probing depth (PD) were measured at baseline, 2 and 6 months. Postoperative pain, patient satisfaction and aesthetic outcomes were also assessed. RESULTS: At 6 months after surgery, the combination technique could attain 3.3 ± 1.6 mm of KMW. No significant change could be detected in GI or PD at 6 months compared to those at 2 months (p > 0.05). The postoperative pain and patient satisfaction in VAS were 2.6 ± 1.2 and 9.5 ± 1.2. The total score of aesthetic outcomes was 3.8 ± 1.2. In the historical FGG group, 4.6 ± 1.6 mm of KMW was reported at 6 months, and the total score of aesthetic outcomes was higher than the combination technique (4.8 ± 0.7 vs. 3.8 ± 1.2, p < 0.05). CONCLUSIONS: The combination technique of SFGG and XCM could increase KMW and maintain peri-implant health. However, this combination technique was associated with inferior augmentation and aesthetic outcomes compared with FGG alone. TRIAL REGISTRATION: This clinical trial was registered in the Chinese Clinical Trial Registry with registration number ChiCTR2200057670 on 15/03/2022.


Assuntos
Colágeno , Implantes Dentários , Gengiva , Humanos , Feminino , Masculino , Colágeno/uso terapêutico , Pessoa de Meia-Idade , Gengiva/transplante , Adulto , Satisfação do Paciente , Índice Periodontal , Gengivoplastia/métodos , Queratinas , Estética Dentária , Resultado do Tratamento , Dor Pós-Operatória/etiologia , Mucosa Bucal/transplante
7.
J Gene Med ; 25(12): e3561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394280

RESUMO

BACKGROUND: The present study aimed to identify the module genes and key gene functions and biological pathways of septic shock (SS) through integrated bioinformatics analysis. METHODS: In the study, we performed batch correction and principal component analysis on 282 SS samples and 79 normal control samples in three datasets, GSE26440, GSE95233 and GSE57065, to obtain a combined corrected gene expression matrix containing 21,654 transcripts. Patients with SS were then divided into three molecular subtypes according to sample subtyping analysis. RESULTS: By analyzing the demographic characteristics of the different subtypes, we found no statistically significant differences in gender ratio and age composition among the three groups. Then, three subtypes of differentially expressed genes (DEGs) and specific upregulated DEGs (SDEGs) were identified by differential gene expression analysis. We found 7361 DEGs in the type I group, 5594 DEGs in the type II group, and 7159 DEGs in the type III group. There were 1698 SDEGs in the type I group, 2443 in the type II group, and 1831 in the type III group. In addition, we analyzed the correlation between the expression data of 5972 SDEGs in the three subtypes and the gender and age of 227 patients, constructed a weighted gene co-expression network, and identified 11 gene modules, among which the module with the highest correlation with gender ratio was MEgrey. The modules with the highest correlation with age composition were MEgrey60 and MElightyellow. Then, by analyzing the differences in module genes among different subgroups of SS, we obtained the differential expression of 11 module genes in four groups: type I, type II, type III and the control group. Finally, we analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of all module DEGs, and the GO function and KEGG pathway enrichment of different module genes were different. CONCLUSIONS: Our findings aim to identify the specific genes and intrinsic molecular functional pathways of SS subtypes, as well as further explore the genetic and molecular pathophysiological mechanisms of SS.


Assuntos
Mapas de Interação de Proteínas , Choque Séptico , Humanos , Mapas de Interação de Proteínas/genética , Choque Séptico/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Biomarcadores , Biologia Computacional
8.
J Med Virol ; 95(3): e28561, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755358

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a poor inducer of innate antiviral immunity, and the underlying mechanism still needs further investigation. Here, we reported that SARS-CoV-2 NSP7 inhibited the production of type I and III interferons (IFNs) by targeting the RIG-I/MDA5, Toll-like receptor (TLR3)-TRIF, and cGAS-STING signaling pathways. SARS-CoV-2 NSP7 suppressed the expression of IFNs and IFN-stimulated genes induced by poly (I:C) transfection and infection with Sendai virus or SARS-CoV-2 virus-like particles. NSP7 impaired type I and III IFN production activated by components of the cytosolic dsRNA-sensing pathway, including RIG-I, MDA5, and MAVS, but not TBK1, IKKε, and IRF3-5D, an active form of IRF3. In addition, NSP7 also suppressed TRIF- and STING-induced IFN responses. Mechanistically, NSP7 associated with RIG-I and MDA5 prevented the formation of the RIG-I/MDA5-MAVS signalosome and interacted with TRIF and STING to inhibit TRIF-TBK1 and STING-TBK1 complex formation, thus reducing the subsequent IRF3 phosphorylation and nuclear translocation that are essential for IFN induction. In addition, ectopic expression of NSP7 impeded innate immune activation and facilitated virus replication. Taken together, SARS-CoV-2 NSP7 dampens type I and III IFN responses via disruption of the signal transduction of the RIG-I/MDA5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways, thus providing novel insights into the interactions between SARS-CoV-2 and innate antiviral immunity.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , SARS-CoV-2/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Transdução de Sinais , Interferons , Imunidade Inata , Nucleotidiltransferases/metabolismo , Antivirais , Proteínas Adaptadoras de Transporte Vesicular/genética
9.
J Med Virol ; 95(4): e28680, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929724

RESUMO

SARS-CoV-2 has developed a variety of approaches to counteract host innate antiviral immunity to facilitate its infection, replication and pathogenesis, but the molecular mechanisms that it employs are still not been fully understood. Here, we found that SARS-CoV-2 NSP8 inhibited the production of type I and III interferons (IFNs) by acting on RIG-I/MDA5 and the signaling molecules TRIF and STING. Overexpression of NSP8 downregulated the expression of type I and III IFNs stimulated by poly (I:C) transfection and infection with SeV and SARS-CoV-2. In addition, NSP8 impaired IFN expression triggered by overexpression of the signaling molecules RIG-I, MDA5, and MAVS, instead of TBK1 and IRF3-5D, an active form of IRF3. From a mechanistic view, NSP8 interacts with RIG-I and MDA5, and thereby prevents the assembly of the RIG-I/MDA5-MAVS signalosome, resulting in the impaired phosphorylation and nuclear translocation of IRF3. NSP8 also suppressed the TRIF- and STING- induced IFN expression by directly interacting with them. Moreover, ectopic expression of NSP8 promoted virus replications. Taken together, SARS-CoV-2 NSP8 suppresses type I and III IFN responses by disturbing the RIG-I/MDA5-MAVS complex formation and targeting TRIF and STING signaling transduction. These results provide new insights into the pathogenesis of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons , SARS-CoV-2/metabolismo , Transdução de Sinais
10.
Clin Lab ; 69(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948486

RESUMO

BACKGROUND: Nucleophosmin 1 (NPM1) mutations, which occur in 25 - 30% of acute myeloid leukemia (AML) and 50 - 60% of AML with normal karyotype, have been identified as an important marker for stratification of prog-nosis in AML. This study aimed to establish a new quantitative polymerase chain reaction (PCR) technique, the drop-off droplet digital PCR (ddPCR), for rapid and sensitive detection of NPM1 mutations in AML. METHODS: We established the drop-off ddPCR system and verified its performance. NPM1 mutations were screened in 130 AML patients by drop-off ddPCR and were validated by Sanger sequencing and next-generation sequencing (NGS). Then, the NPM1 mutation burden was dynamically monitored in five patients. RESULTS: The limit of blank (LOB) of drop-off ddPCR established for NPM1 mutation was 3.36 copies/µL, and the limit of detection (LOD) was 5.00 - 5.37 copies/µL in 50 ng DNA, and the sensitivity was about 0.05%, which had good linearity. Drop-off ddPCR identified 33/130 (25.4%) NPM1 mutated cases, consistent with Sanger sequencing. In 18 NPM1 positive cases selected randomly, NGS identified fourteen with type A mutation, two with type D mutation, and two with rare type mutations. The mutation burden of NPM1 mutation analyzed by NGS was consistent with the drop-off ddPCR. The sequential samples were detected for measurable residual disease (MRD) monitoring in 5 patients showed that the NPM1 mutation burden was consistent with clinical remission and recurrence. Compared with traditional ddPCR, drop-off ddPCR was also suitable for MRD monitoring. CONCLUSIONS: In this study, we established a drop-off ddPCR method for detecting three common mutations in AML with good sensitivity and repeatability, which can be used to screen mutations in newly diagnosed AML patients and for MRD monitoring after remission to guide treatment.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Reação em Cadeia da Polimerase , Mutação , Prognóstico
11.
Mediators Inflamm ; 2023: 3648946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292257

RESUMO

Background: The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method: To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results: The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion: This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.


Assuntos
Glioma , Análise da Expressão Gênica de Célula Única , Humanos , Prognóstico , Fatores de Transcrição , Linfócitos T CD4-Positivos , Complexo CD3 , Glioma/genética , Microambiente Tumoral/genética , Canais de Translocação SEC
12.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6492-6499, 2023 Dec.
Artigo em Zh | MEDLINE | ID: mdl-38212006

RESUMO

Shenfu Injection(SFI) is praised for the high efficacy in the treatment of septic shock. However, the precise role of SFI in the treatment of sepsis-associated lung injury is not fully understood. This study investigated the protective effect of SFI on sepsis-associated lung injury by a clinical trial and an animal experiment focusing on the hypoxia-inducing factor-1α(HIF-1α)-mediated mitochondrial autophagy. For the clinical trial, 70 patients with sepsis-associated lung injury treated in the emergency intensive care unit of the First Affiliated Hospital of Zhengzhou University were included. The levels of interleukin(IL)-6 and tumor necrosis factor(TNF)-α were measured on days 1 and 5 for every patient. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to determine the mRNA level of hypoxia inducible factor-1α(HIF-1α) in the peripheral blood mononuclear cells(PBMCs). For the animal experiment, 32 SPF-grade male C57BL/6J mice(5-6 weeks old) were randomized into 4 groups: sham group(n=6), SFI+sham group(n=10), SFI+cecal ligation and puncture(CLP) group(n=10), and CLP group(n=6). The body weight, body temperature, wet/dry weight(W/D) ratio of the lung tissue, and the pathological injury score of the lung tissue were recorded for each mouse. RT-qPCR and Western blot were conducted to determine the expression of HIF-1α, mitochondrial DNA(mt-DNA), and autophagy-related proteins in the lung tissue. The results of the clinical trial revealed that the SFI group had lowered levels of inflammatory markers in the blood and alveolar lavage fluid and elevated level of HIF-1α in the PBMCs. The mice in the SFI group showed recovered body temperature and body weight. lowered TNF-α level in the serum, and decreased W/D ratio of the lung tissue. SFI reduced the inflammatory exudation and improved the alveolar integrity in the lung tissue. Moreover, SFI down-regulated the mtDNA expression and up-regulated the protein levels of mitochondrial transcription factor A(mt-TFA), cytochrome c oxidase Ⅳ(COXⅣ), HIF-1α, and autophagy-related proteins in the lung tissue of the model mice. The findings confirmed that SFI could promote mitophagy to improve mitochondrial function by regulating the expression of HIF-1α.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Sepse , Humanos , Masculino , Camundongos , Animais , Leucócitos Mononucleares , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Hipóxia/patologia , Proteínas Relacionadas à Autofagia , Peso Corporal
13.
Kidney Int ; 101(1): 119-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757120

RESUMO

Kidney fibrosis is associated with the progression of acute kidney injury to chronic kidney disease. MG53, a cell membrane repair protein, has been shown to protect against injury to kidney epithelial cells and acute kidney injury. Here, we evaluated the role of MG53 in modulation of kidney fibrosis in aging mice and in mice with unilateral ureteral obstruction (UUO) a known model of progressive kidney fibrosis. Mice with ablation of MG53 developed more interstitial fibrosis with age than MG53-intact mice of the same age. Similarly, in the absence of MG53, kidney fibrosis was exaggerated compared to mice with intact MG53 in the obstructed kidney compared to the contralateral unobstructed kidney or the kidneys of sham operated mice. The ureteral obstructed kidneys from MG53 deficient mice also showed significantly more inflammation than ureteral obstructed kidneys from MG53 intact mice. In vitro experiments demonstrated that MG53 could enter the nuclei of proximal tubular epithelial cells and directly interact with the p65 component of transcription factor NF-κB, providing a possible explanation of enhanced inflammation in the absence of MG53. To test this, enhanced MG53 expression through engineered cells or direct recombinant protein delivery was given to mice subject to UUO. This reduced NF-κB activation and inflammation and attenuated kidney fibrosis. Thus, MG53 may have a therapeutic role in treating chronic kidney inflammation and thereby provide protection against fibrosis that leads to the chronic kidney disease phenotype.


Assuntos
Injúria Renal Aguda , Obstrução Ureteral , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Animais , Membrana Celular/metabolismo , Fibrose , Rim/patologia , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Obstrução Ureteral/metabolismo
14.
J Virol ; 95(17): e0074721, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133897

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is bringing an unprecedented health crisis to the world. To date, our understanding of the interaction between SARS-CoV-2 and host innate immunity is still limited. Previous studies reported that SARS-CoV-2 nonstructural protein 12 (NSP12) was able to suppress interferon-ß (IFN-ß) activation in IFN-ß promoter luciferase reporter assays, which provided insights into the pathogenesis of COVID-19. In this study, we demonstrated that IFN-ß promoter-mediated luciferase activity was reduced during coexpression of NSP12. However, we could show NSP12 did not affect IRF3 or NF-κB activation. Moreover, IFN-ß production induced by Sendai virus (SeV) infection or other stimulus was not affected by NSP12 at mRNA or protein level. Additionally, the type I IFN signaling pathway was not affected by NSP12, as demonstrated by the expression of interferon-stimulated genes (ISGs). Further experiments revealed that different experiment systems, including protein tags and plasmid backbones, could affect the readouts of IFN-ß promoter luciferase assays. In conclusion, unlike as previously reported, our study showed SARS-CoV-2 NSP12 protein is not an IFN-ß antagonist. It also rings the alarm on the general usage of luciferase reporter assays in studying SARS-CoV-2. IMPORTANCE Previous studies investigated the interaction between SARS-CoV-2 viral proteins and interferon signaling and proposed that several SARS-CoV-2 viral proteins, including NSP12, could suppress IFN-ß activation. However, most of these results were generated from IFN-ß promoter luciferase reporter assay and have not been validated functionally. In our study, we found that, although NSP12 could suppress IFN-ß promoter luciferase activity, it showed no inhibitory effect on IFN-ß production or its downstream signaling. Further study revealed that contradictory results could be generated from different experiment systems. On one hand, we demonstrated that SARS-CoV-2 NSP12 could not suppress IFN-ß signaling. On the other hand, our study suggests that caution needs to be taken with the interpretation of SARS-CoV-2-related luciferase assays.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Interferon beta , Regiões Promotoras Genéticas , SARS-CoV-2 , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/antagonistas & inibidores , Interferon beta/biossíntese , Interferon beta/genética , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
15.
J Med Virol ; 94(11): 5174-5188, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35765167

RESUMO

A characteristic feature of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the dysregulated immune response with impaired type I and III interferon (IFN) expression and an overwhelming inflammatory cytokine storm. RIG-I-like receptors (RLRs) and cGAS-STING signaling pathways are responsible for sensing viral infection and inducing IFN production to combat invading viruses. Multiple proteins of SARS-CoV-2 have been reported to modulate the RLR signaling pathways to achieve immune evasion. Although SARS-CoV-2 infection also activates the cGAS-STING signaling by stimulating micronuclei formation during the process of syncytia, whether SARS-CoV-2 modulates the cGAS-STING pathway requires further investigation. Here, we screened 29 SARS-CoV-2-encoded viral proteins to explore the viral proteins that affect the cGAS-STING signaling pathway and found that SARS-CoV-2 open reading frame 10 (ORF10) targets STING to antagonize IFN activation. Overexpression of ORF10 inhibits cGAS-STING-induced interferon regulatory factor 3 phosphorylation, translocation, and subsequent IFN induction. Mechanistically, ORF10 interacts with STING, attenuates the STING-TBK1 association, and impairs STING oligomerization and aggregation and STING-mediated autophagy; ORF10 also prevents the endoplasmic reticulum (ER)-to-Golgi trafficking of STING by anchoring STING in the ER. Taken together, these findings suggest that SARS-CoV-2 ORF10 impairs the cGAS-STING signaling by blocking the translocation of STING and the interaction between STING and TBK1 to antagonize innate antiviral immunity.


Assuntos
COVID-19 , Interferon Tipo I , Autofagia , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Fases de Leitura Aberta , Proteínas Serina-Treonina Quinases/genética , SARS-CoV-2 , Proteínas Virais/metabolismo
16.
Circ Res ; 126(4): 417-435, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31805819

RESUMO

RATIONALE: Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE: In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS: We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS: In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiotônicos/farmacologia , Eletrocardiografia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibrose/genética , Fibrose/fisiopatologia , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Isoproterenol/farmacologia , Camundongos Knockout , Simulação de Acoplamento Molecular , Miocárdio/citologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
17.
Pflugers Arch ; 473(3): 547-556, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33474637

RESUMO

Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously expresses in all tissues, and TRIC-B-/- mice is lethal at the neonatal stage. TRIC-A mainly expresses in excitable cells. TRIC-A-/- mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+ homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.


Assuntos
Sinalização do Cálcio/fisiologia , Homeostase/fisiologia , Canais Iônicos/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Humanos
18.
Mol Cancer ; 20(1): 118, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521423

RESUMO

BACKGROUND: Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). METHODS: Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. RESULTS: We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. CONCLUSION: Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Grânulos de Estresse/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33168613

RESUMO

Despite excellent bactericidal effect, dosing adjustment of polymyxin B for patients with renal insufficiency and polymyxin B-related nephrotoxicity is still a major concern to clinicians. The aim of this study was to compare the population pharmacokinetics (PK) properties of polymyxin B in Chinese patients with different renal functions and to investigate the relationship between PK parameters and polymyxin B-related acute kidney injury (AKI). A total of 37 patients with normal renal function (creatinine clearance ≥ 80 ml/min) and 33 with renal insufficiency (creatinine clearance < 80 ml/min) were included. In the two-compartment population PK models, the central compartment clearance (CL) (2.19 liters/h versus 1.58 liters/h; P < 0.001) and intercompartmental clearance (Q) (13.83 liters/h versus 10.28 liters/h; P < 0.001) values were significantly different between the two groups. The simulated values for AUC across 24 h at steady state (AUCss,24h) for patients with normal renal function were higher than those for patients with renal insufficiency. However, renal dosing adjustment of polymyxin B seemed not to be necessary. In addition, during the treatment, AKI occurred in 23 (32.86%) patients. The polymyxin B AUCss,24h in patients with AKI was significantly higher than that in patients without AKI (108.66 ± 70.10 mg · h/liter versus 66.18 ± 34.79 mg · h/liter; P = 0.001). Both the receiver operating characteristic (ROC) curve and logistic regression analysis showed that an AUCss,24h of >100 mg · h/liter was a good predictor for the probability of nephrotoxicity.


Assuntos
Injúria Renal Aguda , Polimixina B , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Antibacterianos/efeitos adversos , China , Humanos , Rim , Polimixina B/efeitos adversos
20.
J Med Virol ; 93(9): 5376-5389, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913550

RESUMO

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.


Assuntos
Proteína DEAD-box 58/imunologia , Evasão da Resposta Imune/genética , Interferons/imunologia , Nucleotidiltransferases/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2/imunologia , Receptor 3 Toll-Like/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteína DEAD-box 58/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Receptores Imunológicos/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/genética , Transfecção , Células Vero , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa