Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Clin Invest ; 50(2): e13192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31815292

RESUMO

BACKGROUND: Defined by thyroid-pituitary feedback control, clinical diagnosis of hypothyroidism and hyperthyroidism has become synonymous with TSH measurement. We combined in silico analysis and in vivo data to explore the central influences on thyroidal T3 production. MATERIALS & METHODS: A system of five coupled first-order nonlinear parameterised ordinary differential equations (ODEs) is used to model the feedback control of TSH and TRH by thyroid hormones together with the feedforward control of thyroidal T3 secretion and enzymatic T4-T3 conversion. Dependencies of the stable equilibrium solutions of this ODE system, that is the homeostasis of the underlying physiological process, on the system parameters were investigated whether they accounted for clinical observations. RESULTS: During the modelled transition to hypothyroidism, central control imposed an increasing influence in maintaining serum FT3 levels, compared to peripheral conversion efficiency. Numerical continuation analysis revealed dependencies of T3 production on different elements of TSH feedforward control. While T4-T3 conversion provided the main T3 source in euthyroidism, this was overtaken by increasing glandular T3 secretion when thyroid reserve declined. The computational results were in good agreement with data from untreated patients with autoimmune thyroiditis. CONCLUSIONS: Dependencies revealed in the expression of control differ in thyroid health and disease, using a physiologically based mathematical model of combined feedback-feedforward control of the hypothalamic-pituitary-thyroid regulation. Strong T3-protective mechanisms of the control system emerge with declining thyroid function, when glandular T3 secretion becomes increasingly influential over conversion efficiency. This has wide-ranging implications for the utility of TSH in clinical decision-making.


Assuntos
Retroalimentação Fisiológica , Hipotireoidismo/metabolismo , Glândula Tireoide/metabolismo , Tireoidite Autoimune/metabolismo , Tireotropina/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Adulto , Idoso , Autoanticorpos/imunologia , Simulação por Computador , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotireoidismo/imunologia , Iodeto Peroxidase/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Hipófise/metabolismo , Tireoidite Autoimune/imunologia , Hormônio Liberador de Tireotropina/metabolismo
2.
Ther Adv Endocrinol Metab ; 14: 20420188231158163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936128

RESUMO

Background: Thyroid hormones are controlled by the hypothalamic-pituitary-thyroid (HPT) axis through a complex network of regulatory loops, involving the hormones TRH, TSH, FT4, and FT3. The relationship between TSH and FT4 is widely used for diagnosing thyroid diseases. However, mechanisms of FT3 homeostasis are not well understood. Objective: We used mathematical modelling to further examine mechanisms that exist in the HPT axis regulation for protecting circulating FT3 levels. Methods: A mathematical model consisting of a system of four coupled first-order parameterized non-linear ordinary differential equations (ODEs) was developed, accounting for the interdependencies between the hormones in the HPT axis regulation. While TRH and TSH feed forward to the pituitary and thyroid, respectively, FT4 and FT3 feed backward to both the pituitary and hypothalamus. Stable equilibrium solutions of the ODE system express homeostasis for a particular variable, such as FT3, if this variable stays in a narrow range while certain other parameter(s) and system variable(s) may vary substantially. Results: The model predicts that (1) TSH-feedforward protects FT3 levels if the FT4 production rate declines and (2) combined negative feedback by FT4 and FT3 on both TSH and TRH production rates keeps FT3 levels insensitive to moderate changes in FT4 production rates and FT4 levels. The optimum FT4 and FT3 feedback and TRH and TSH-feedforward ranges that preserve FT3 homeostasis were found by numerical continuation analysis. Model predictions were in close agreement with clinical studies and individual patient examples of hypothyroidism and hyperthyroidism. Conclusions: These findings further extend the concept of HPT axis regulation beyond TSH and FT4 to integrate the more active sister hormone FT3 and mechanisms of FT3 homeostasis. Disruption of homeostatic mechanisms leads to disease. This provides a perspective for novel testable concepts in clinical studies to therapeutically target the disruptive mechanisms.

3.
J Am Heart Assoc ; 11(11): e024411, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621196

RESUMO

Background Lewy body diseases (LBDs) feature deficiency of the sympathetic neurotransmitter norepinephrine in the left ventricular myocardium and sympathetic intra-neuronal deposition of the protein alpha-synuclein (αS). LBDs therefore are autonomic synucleinopathies. Computational modeling has revealed multiple functional abnormalities in residual myocardial sympathetic noradrenergic nerves in LBDs, including decreased norepinephrine synthesis, vesicular storage, and recycling. We report an extended model that enables predictions about the progression of LBDs and effects of genetic predispositions and treatments on that progression. Methods and Results The model combines cardiac sympathetic activation with autotoxicity mediated by the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde. We tested the model by its ability to predict longitudinal empirical data based on cardiac sympathetic neuroimaging, effects of genetic variations related to particular intra-neuronal reactions, treatment by monoamine oxidase inhibition to decrease 3,4-dihydroxyphenylacetaldehyde production, and post-mortem myocardial tissue contents of catecholamines and αS. The new model generated a triphasic decline in myocardial norepinephrine content. This pattern was confirmed by empirical data from serial cardiac 18F-dopamine positron emission tomographic scanning in patients with LBDs. The model also correctly predicted empirical data about effects of genetic variants and monoamine oxidase inhibition and about myocardial levels of catecholamines and αS. Conclusions The present computational model predicts a triphasic decline in myocardial norepinephrine content as LBDs progress. According to the model, disease-modifying interventions begun at the transition from the first to the second phase delay the onset of symptomatic disease. Computational modeling coupled with biomarkers of preclinical autonomic synucleinopathy may enable early detection and more effective treatment of LBDs.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Catecolaminas/metabolismo , Dopamina/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Sistema Nervoso Simpático , Tomografia Computadorizada por Raios X
4.
Front Endocrinol (Lausanne) ; 13: 825107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757421

RESUMO

Endocrine regulation in the hypothalamic-pituitary-thyroid (HPT) axis is orchestrated by physiological circuits which integrate multiple internal and external influences. Essentially, it provides either of the two responses to overt biological challenges: to defend the homeostatic range of a target hormone or adapt it to changing environmental conditions. Under certain conditions, such flexibility may exceed the capability of a simple feedback control loop, rather requiring more intricate networks of communication between the system's components. A new minimal mathematical model, in the form of a parametrized nonlinear dynamical system, is here formulated as a proof-of-concept to elucidate the principles of the HPT axis regulation. In particular, it allows uncovering mechanisms for the homeostasis of the key biologically active hormone free triiodothyronine (FT3). One mechanism supports the preservation of FT3 homeostasis, whilst the other is responsible for the adaptation of the homeostatic state to a new level. Together these allow optimum resilience in stressful situations. Preservation of FT3 homeostasis, despite changes in FT4 and TSH levels, is found to be an achievable system goal by joining elements of top-down and bottom-up regulation in a cascade of targeted feedforward and feedback loops. Simultaneously, the model accounts for the combination of properties regarded as essential to endocrine regulation, namely sensitivity, the anticipation of an adverse event, robustness, and adaptation. The model therefore offers fundamental theoretical insights into the effective system control of the HPT axis.


Assuntos
Tireotropina , Tiroxina , Sistema Hipotálamo-Hipofisário/fisiologia , Glândula Tireoide/fisiologia , Tri-Iodotironina
5.
JCI Insight ; 52019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31335324

RESUMO

BACKGROUND: Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major non-motor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients. METHODS: Rate constants were calculated for 17 reactions determining intra-neuronal norepinephrine stores. Model predictions were tested by measuring post-mortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease. RESULTS: The model identified low rate constants for three types of processes in the Lewy body group-catecholamine biosynthesis via tyrosine hydroxylase and L-aromatic-amino-acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Post-mortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities. CONCLUSION: Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are "sick but not dead," suggesting targeted disease-modification strategies might retard clinical progression. TRIAL REGISTRATION: This study was not a clinical trial. FUNDING: The research reported here was supported by the Division of Intramural Research, NINDS.


Assuntos
Anormalidades Múltiplas/metabolismo , Simulação por Computador , Doença por Corpos de Lewy/metabolismo , Miocárdio/metabolismo , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa