Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Infect Dis ; 73(11): e3939-e3948, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33534888

RESUMO

BACKGROUND: Differential etiologies of pediatric acute febrile respiratory illness pose challenges for all populations globally, but especially in malaria-endemic settings because the pathogens responsible overlap in clinical presentation and frequently occur together. Rapid identification of bacterial pneumonia with high-quality diagnostic tools would enable appropriate, point-of-care antibiotic treatment. Current diagnostics are insufficient, and the discovery and development of new tools is needed. We report a unique biomarker signature identified in blood samples to accomplish this. METHODS: Blood samples from 195 pediatric Mozambican patients with clinical pneumonia were analyzed with an aptamer-based, high-dynamic-range, quantitative assay (~1200 proteins). We identified new biomarkers using a training set of samples from patients with established bacterial, viral, or malarial pneumonia. Proteins with significantly variable abundance across etiologies (false discovery rate <0.01) formed the basis for predictive diagnostic models derived from machine learning techniques (Random Forest, Elastic Net). Validation on a dedicated test set of samples was performed. RESULTS: Significantly different abundances between bacterial and viral infections (219 proteins) and bacterial infections and mixed (viral and malaria) infections (151 proteins) were found. Predictive models achieved >90% sensitivity and >80% specificity, regardless of number of pathogen classes. Bacterial pneumonia was strongly associated with neutrophil markers-in particular, degranulation including HP, LCN2, LTF, MPO, MMP8, PGLYRP1, RETN, SERPINA1, S100A9, and SLPI. CONCLUSIONS: Blood protein signatures highly associated with neutrophil biology reliably differentiated bacterial pneumonia from other causes. With appropriate technology, these markers could provide the basis for a rapid diagnostic for field-based triage for antibiotic treatment of pediatric pneumonia.


Assuntos
Malária , Pneumonia Bacteriana , Pneumonia Viral , Viroses , Biomarcadores , Criança , Humanos , Malária/diagnóstico , Pneumonia Bacteriana/diagnóstico , Viroses/diagnóstico
2.
Clin Infect Dis ; 70(11): 2262-2269, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31313805

RESUMO

BACKGROUND: In the absence of proper guidelines and algorithms, available rapid diagnostic tests (RDTs) for common acute undifferentiated febrile illnesses are often used inappropriately. METHODS: Using prevalence data of 5 common febrile illnesses from India and Cambodia, and performance characteristics (sensitivity and specificity) of relevant pathogen-specific RDTs, we used a mathematical model to predict the probability of correct identification of each disease when diagnostic testing occurs either simultaneously or sequentially in various algorithms. We developed a web-based application of the model so as to visualize and compare output diagnostic algorithms when different disease prevalence and test performance characteristics are introduced. RESULTS: Diagnostic algorithms with appropriate sequential testing predicted correct identification of etiology in 74% and 89% of patients in India and Cambodia, respectively, compared with 46% and 49% with simultaneous testing. The optimally performing sequential diagnostic algorithms differed in India and Cambodia due to varying disease prevalence. CONCLUSIONS: Simultaneous testing is not appropriate for the diagnosis of acute undifferentiated febrile illnesses with presently available tests, which should deter the unsupervised use of multiplex diagnostic tests. The implementation of adaptive algorithms can predict better diagnosis and add value to the available RDTs. The web application of the model can serve as a tool to identify the optimal diagnostic algorithm in different epidemiological settings, while taking into account the local epidemiological variables and accuracy of available tests.


Assuntos
Algoritmos , Testes Diagnósticos de Rotina , Camboja/epidemiologia , Humanos , Índia/epidemiologia , Sensibilidade e Especificidade
3.
J Infect Dis ; 215(2): 312-320, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27837008

RESUMO

Background: Pediatric acute respiratory distress in tropical settings is very common. Bacterial pneumonia is a major contributor to morbidity and mortality rates and requires adequate diagnosis for correct treatment. A rapid test that could identify bacterial (vs other) infections would have great clinical utility. Methods and Results: We performed RNA (RNA-seq) sequencing and analyzed the transcriptomes of 68 pediatric patients with well-characterized clinical phenotype to identify transcriptional features associated with each disease class. We refined the features to predictive models (support vector machine, elastic net) and validated those models in an independent test set of 37 patients (80%-85% accuracy). Conclusions: We have identified sets of genes that are differentially expressed in pediatric patients with pneumonia syndrome attributable to different infections and requiring different therapeutic interventions. Findings of this study demonstrate that human transcription signatures in infected patients recapitulate the underlying biology and provide models for predicting a bacterial diagnosis to inform treatment.


Assuntos
Perfilação da Expressão Gênica , Patologia Molecular/métodos , Pneumonia/etiologia , Pneumonia/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pneumonia/diagnóstico , Análise de Sequência de RNA
4.
Cell Microbiol ; 17(11): 1618-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25996544

RESUMO

Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM.


Assuntos
Babesia bovis/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Plasmodium/fisiologia , Transporte Proteico , Análise de Sequência de DNA , Toxoplasma/fisiologia
5.
Glob Health Sci Pract ; 11(4)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640492

RESUMO

Clinical decision support systems (CDSSs) can strengthen the quality of integrated management of childhood illness (IMCI) in resource-constrained settings. Several IMCI-related CDSSs have been developed and implemented in recent years. Yet, despite having a shared starting point, the IMCI-related CDSSs are markedly varied due to the need for interpretation when translating narrative guidelines into decision logic combined with considerations of context and design choices. Between October 2019 and April 2021, we conducted a comparative analysis of 4 IMCI-related CDSSs. The extent of adaptations to IMCI varied, but common themes emerged. Scope was extended to cover a broader range of conditions. Content was added or modified to enhance precision, align with new evidence, and support rational resource use. Structure was modified to increase efficiency, improve usability, and prioritize care for severely ill children. The multistakeholder development processes involved syntheses of recommendations from existing guidelines and literature; creation and validation of clinical algorithms; and iterative development, implementation, and evaluation. The common themes surrounding adaptations of IMCI guidance highlight the complexities of digitalizing evidence-based recommendations and reinforce the rationale for leveraging standards for CDSS development, such as the World Health Organization's SMART Guidelines. Implementation through multistakeholder dialogue is critical to ensure CDSSs can effectively and equitably improve quality of care for children in resource-constrained settings.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Eritrodermia Ictiosiforme Congênita , Erros Inatos do Metabolismo Lipídico , Criança , Humanos , Algoritmos
6.
Front Artif Intell ; 4: 554017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35187469

RESUMO

It is currently estimated that 67% of malaria deaths occur in children under-five years (WHO, 2020). To improve the identification of children at clinical risk for malaria, the WHO developed community (iCCM) and clinic-based (IMCI) protocols for frontline health workers using paper-based forms or digital mobile health (mHealth) platforms. To investigate improving the accuracy of these point-of-care clinical risk assessment protocols for malaria in febrile children, we embedded a malaria rapid diagnostic test (mRDT) workflow into THINKMD's (IMCI) mHealth clinical risk assessment platform. This allowed us to perform a comparative analysis of THINKMD-generated malaria risk assessments with mRDT truth data to guide modification of THINKMD algorithms, as well as develop new supervised machine learning (ML) malaria risk algorithms. We utilized paired clinical data and malaria risk assessments acquired from over 555 children presenting to five health clinics in Kano, Nigeria to train ML algorithms to identify malaria cases using symptom and location data, as well as confirmatory mRDT results. Supervised ML random forest algorithms were generated using 80% of our field-based data as the ML training set and 20% to test our new ML logic. New ML-based malaria algorithms showed an increased sensitivity and specificity of 60 and 79%, and PPV and NPV of 76 and 65%, respectively over THINKD initial IMCI-based algorithms. These results demonstrate that combining mRDT "truth" data with digital mHealth platform clinical assessments and clinical data can improve identification of children with malaria/non-malaria attributable febrile illnesses.

7.
BMJ Glob Health ; 5(2): e002067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181003

RESUMO

Health workers in low-resource settings often lack the support and tools to follow evidence-based clinical recommendations for diagnosing, treating and managing sick patients. Digital technologies, by combining patient health information and point-of-care diagnostics with evidence-based clinical protocols, can help improve the quality of care and the rational use of resources, and save patient lives. A growing number of electronic clinical decision support algorithms (CDSAs) on mobile devices are being developed and piloted without evidence of safety or impact. Here, we present a target product profile (TPP) for CDSAs aimed at guiding preventive or curative consultations in low-resource settings. This document will help align developer and implementer processes and product specifications with the needs of end users, in terms of quality, safety, performance and operational functionality. To identify the characteristics of CDSAs, a multidisciplinary group of experts (academia, industry and policy makers) with expertise in diagnostic and CDSA development and implementation in low-income and middle-income countries were convened to discuss a draft TPP. The TPP was finalised through a Delphi process to facilitate consensus building. An agreement greater than 75% was reached for all 40 TPP characteristics. In general, experts were in overwhelming agreement that, given that CDSAs provide patient management recommendations, the underlying clinical algorithms should be human-interpretable and evidence-based. Whenever possible, the algorithm's patient management output should take into account pretest disease probabilities and likelihood ratios of clinical and diagnostic predictors. In addition, validation processes should at a minimum show that CDSAs are implementing faithfully the evidence they are based on, and ideally the impact on patient health outcomes. In terms of operational needs, CDSAs should be designed to fit within clinic workflows and function in connectivity-challenged and high-volume settings. Data collected through the tool should conform to local patient privacy regulations and international data standards.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Algoritmos , Eletrônica , Humanos , Renda , Testes Imediatos
9.
Genome Med ; 7(1): 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25722744

RESUMO

BACKGROUND: During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. RESULTS: We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. CONCLUSIONS: This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa