Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
EMBO J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918635

RESUMO

Phosphatidylserine (PS) is an important anionic phospholipid that is synthesized within the endoplasmic reticulum (ER). While PS shows the highest enrichment and serves important functional roles in the plasma membrane (PM) but its role in the nucleus is poorly explored. Using three orthogonal approaches, we found that PS is also uniquely enriched in the inner nuclear membrane (INM) and the nuclear reticulum (NR). Nuclear PS is critical for supporting the translocation of CCTα and Lipin1α, two key enzymes important for phosphatidylcholine (PC) biosynthesis, from the nuclear matrix to the INM and NR in response to oleic acid treatment. We identified the PS-interacting regions within the M-domain of CCTα and M-Lip domain of Lipin1α, and show that lipid droplet formation is altered by manipulations of nuclear PS availability. Our studies reveal an unrecognized regulatory role of nuclear PS levels in the regulation of key PC synthesizing enzymes within the nucleus.

2.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
3.
EMBO Rep ; 23(7): e54532, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35712788

RESUMO

Phosphoinositide lipids (PPIn) are enriched in stearic- and arachidonic acids (38:4) but how this enrichment is established and maintained during phospholipase C (PLC) activation is unknown. Here we show that the metabolic fate of newly synthesized phosphatidic acid (PA), the lipid precursor of phosphatidylinositol (PI), is influenced by the fatty acyl-CoA used with preferential routing of the arachidonoyl-enriched species toward PI synthesis. Furthermore, during agonist stimulation the unsaturated forms of PI(4,5P)2 are replenished significantly faster than the more saturated ones, suggesting a favored recycling of the unsaturated forms of the PLC-generated hydrolytic products. Cytidine diphosphate diacylglycerol synthase 2 (CDS2) but not CDS1 was found to contribute to increased PI resynthesis during PLC activation. Lastly, while the lipid transfer protein, Nir2 is found to contribute to rapid PPIn resynthesis during PLC activation, the faster re-synthesis of the 38:4 species does not depend on Nir2. Therefore, the fatty acid side-chain composition of the lipid precursors used for PI synthesis is an important determinant of their metabolic fates, which also contributes to the maintenance of the unique fatty acid profile of PPIn lipids.


Assuntos
Ácidos Graxos , Ácidos Fosfatídicos , Lipogênese , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
4.
Traffic ; 21(2): 200-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31650663

RESUMO

Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.


Assuntos
Membrana Celular , Retículo Endoplasmático , Fosfatidilinositóis , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo
5.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31829496

RESUMO

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Assuntos
Enterovirus , Animais , Enterovirus/genética , Enterovirus/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Células Sf9 , Replicação Viral
6.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R603-R613, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405712

RESUMO

Stress in vertebrates is mediated by the hypothalamus-pituitary-adrenal (in mammals)/interrenal (in fish) (HPA/I) axis, which produces the corticotropin-releasing factor (CRF), adrenocorticotropic hormone (ACTH), and corticosteroids, respectively. Nesfatin-1, a novel anorexigenic peptide encoded in the precursor nucleobindin-2 (NUCB2), is increasingly acknowledged as a peptide that influences the stress axis in mammals. The primary aim of this study was to characterize the putative effects of nesfatin-1 on the fish HPI axis, using goldfish (Carassius auratus) as an animal model. Our results demonstrated that nucb2/nesfatin-1 transcript abundance was detected in the HPI tissues of goldfish, with most abundant expression in the pituitary. NUCB2/nesfatin-1-like immunoreactivity was found in the goldfish hypothalamus, pituitary, and interrenal cells of the head kidney. GPCR12, a putative receptor for nesfatin-1, was also detected in the pituitary and interrenal cells. NUCB2/nesfatin-1-like immunoreactivity was observed in ACTH-expressing pituitary corticotrophs. Acute netting and restraint stress upregulated nucb2/nesfatin-1 mRNA levels in the forebrain, hypothalamus, and pituitary, as well as crf and crf-r1 expression in the forebrain and hypothalamus. Intraperitoneal and intracerebroventricular administration of nesfatin-1 increased cortisol release and hypothalamic crf mRNA levels, respectively. Finally, we found that nesfatin-1 significantly stimulated ACTH secretion from dispersed pituitary cells in vitro. Collectively, our data provide the first evidence showing that nesfatin-1 is a stress responsive peptide, which modulates the stress axis hormones in fish.


Assuntos
Proteínas de Peixes/metabolismo , Carpa Dourada/metabolismo , Hipotálamo/metabolismo , Rim/metabolismo , Nucleobindinas/metabolismo , Hipófise/metabolismo , Animais , Células Cultivadas , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Proteínas de Peixes/genética , Carpa Dourada/genética , Masculino , Nucleobindinas/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Restrição Física
7.
Adv Exp Med Biol ; 1111: 241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321752

RESUMO

This chapter was inadvertently published with an incorrect copyright holder. It has now been updated as below.

8.
Adv Exp Med Biol ; 1111: 77-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30483964

RESUMO

Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Humanos , Fosfatidilinositóis/metabolismo , Ligação Proteica , Transdução de Sinais
9.
Gen Comp Endocrinol ; 205: 268-78, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681225

RESUMO

Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner.


Assuntos
Carpa Dourada/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio Luteinizante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipófise/citologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Cromonas/farmacologia , Ativadores de Enzimas/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
10.
Gen Comp Endocrinol ; 206: 118-29, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038498

RESUMO

Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways.


Assuntos
Cálcio/metabolismo , Carpa Dourada/metabolismo , Hormônio do Crescimento/metabolismo , Óxido Nítrico/metabolismo , Hipófise/metabolismo , Animais , Cafeína/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Nifedipino/farmacologia , Hipófise/citologia , Hipófise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia
11.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496608

RESUMO

In this report, we describe the architecture of Lipofectamine 2000 and 3000 transfection- reagents, as they appear inside of transfected cells, using classical transmission electron microscopy (EM). We also demonstrate that they provoke consistent structural changes after they have entered cells, changes that not only provide new insights into the mechanism of action of these particular transfection-reagents, but also provide a convenient and robust method for identifying by EM which cells in any culture have been successfully transfected. This also provides clues to the mechanism(s) of their toxic effects, when they are applied in excess. We demonstrate that after being bulk-endocytosed by cells, the cationic spheroids of Lipofectamine remain intact throughout the entire time of culturing, but escape from their endosomes and penetrate directly into the cytoplasm of the cell. In so doing, they provoke a stereotypical recruitment and rearrangement of endoplasmic reticulum (ER), and they ultimately end up escaping into the cytoplasm and forming unique 'inclusion-bodies.' Once free in the cytoplasm, they also invariably develop dense and uniform coatings of cytoplasmic ribosomes on their surfaces, and finally, they become surrounded by 'annulate' lamellae' of the ER. In the end, these annulate-lamellar enclosures become the ultrastructural 'signatures' of these inclusion-bodies, and serve to positively and definitively identify all cells that have been effectively transfected. Importantly, these new EM-observations define several new and unique properties of these classical Lipofectamines, and allow them to be discriminated from other lipoidal or particulate transfection-reagents, which we find do not physically break out of endosomes or end up in inclusion bodies, and in fact, provoke absolutely none of these 'signature' cytoplasmic reactions.

12.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464273

RESUMO

Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.

13.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746453

RESUMO

The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.

14.
Gen Comp Endocrinol ; 192: 149-58, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23557646

RESUMO

Two endogenous gonadotropin-releasing hormones (GnRHs), sGnRH and cGnRH-II, stimulate LH and GH release via protein kinase C (PKC) signaling in goldfish. In this study, extracellular signal-regulated kinase kinase 1 and 2 (MEK1/2) involvement in acute and prolonged GnRH effects on goldfish gonadotrope and somatotrope functions, as well as potential interactions with PKC in the control of LH and GH release from goldfish pituitary cells was investigated. MEK1/2 inhibitors U0126 and PD098059 significantly decreased sGnRH but not cGnRH-II-stimulated GH release from perifused goldfish pituitary cells and U0126 significantly reduced the GH, but not the LH, release responses to synthetic PKC activators. In long-term static incubations (up to 24h) with goldfish pituitary cells, U0126 generally did not affect basal LH release but attenuated sGnRH- and cGnRH-II-induced LH release, as well as the time-dependent effects of sGnRH and/or cGnRH-II to elevate total LH availability (sum of release and cell content). sGnRH and cGnRH-II reduced cellular GH content and/or total GH availability at 2, 6, and 12h while static incubation with U0126 alone generally increased basal GH release but reduced cellular GH content and/or the total amount of GH available. U0126 also selectively reduced the sGnRH-induced GH release responses at 6 and 24h but paradoxically inhibited cGnRH-II-stimulated GH secretion while enhancing sGnRH-elicited GH release at 2h. Taken together, this study reveals the complexity of GnRH-stimulated MEK1/2 signaling and adds to our understanding of cell-type- and GnRH-isoform-selective signal transduction in the regulation of pituitary cell hormone release and production.


Assuntos
Carpa Dourada/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio Luteinizante/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Animais , Butadienos/farmacologia , Flavonoides/farmacologia , Hormônio do Crescimento/genética , Hormônio Luteinizante/genética , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Nitrilas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Ann Clin Transl Neurol ; 9(9): 1345-1358, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880319

RESUMO

OBJECTIVE: Intracellular signaling networks rely on proper membrane organization to control an array of cellular processes such as metabolism, proliferation, apoptosis, and macroautophagy in eukaryotic cells and organisms. Phosphatidylinositol 4-phosphate (PI4P) emerged as an essential regulatory lipid within organelle membranes that defines their lipid composition and signaling properties. PI4P is generated by four distinct phosphatidylinositol 4-kinases (PI4K) in mammalian cells: PI4KA, PI4KB, PI4K2A, PI4K2B. Animal models and human genetic studies suggest vital roles of PI4K enzymes in development and function of various organs, including the nervous system. Bi-allelic variants in PI4KA were recently associated with neurodevelopmental disorders (NDD), brain malformations, leukodystrophy, primary immunodeficiency, and inflammatory bowel disease. Here, we describe patients from two unrelated consanguineous families with PI4K2A deficiency and functionally explored the pathogenic mechanism. METHODS: Two patients with PI4K2A deficiency were identified by exome sequencing, presenting with developmental and epileptic-dyskinetic encephalopathy. Neuroimaging showed corpus callosum dysgenesis, diffuse white matter volume loss, and hypoplastic vermis. In addition to NDD, we observed recurrent infections and death at toddler age. We further explored identified variants with cellular assays. RESULTS: This clinical presentation overlaps with what was previously reported in two affected siblings with homozygous nonsense PI4K2A variant. Cellular studies analyzing these human variants confirmed their deleterious effect on PI4K2A activity and, together with the central role of PI4K2A in Rab7-associated vesicular trafficking, establish a link between late endosome-lysosome defects and NDD. INTERPRETATION: Our study establishes the genotype-phenotype spectrum of PI4K-associated NDD and highlights several commonalities with other innate errors of intracellular trafficking.


Assuntos
Epilepsia Generalizada , Antígenos de Histocompatibilidade Menor , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool) , Epilepsia Generalizada/genética , Homozigoto , Humanos , Antígenos de Histocompatibilidade Menor/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
16.
Am J Pathol ; 176(5): 2520-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20304954

RESUMO

Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.


Assuntos
Proliferação de Células , Ciclina D1/biossíntese , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/fisiologia , Neoplasias Cutâneas/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Humanos , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Neuroendocrinol ; 33(9): e13010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312927

RESUMO

Nesfatin-1, an 82 amino acid peptide cleaved from the N-terminal of its precursor nucleobindin-2 (NUCB2), is emerging as a multifunctional peptide in fish. The present study aimed to determine whether nesfatin-1 plays a role in fish somatic growth by modulating the growth hormone (GH)/insulin-like growth factor (IGF) axis, using a representative teleost model, the goldfish (Carassius auratus). The results demonstrated that a single i.p. injection of synthetic goldfish nesfatin-1 significantly decreased the expression of hypothalamic pacap (approximately 90%) and pituitary Gh (approximately 90%) mRNAs at 15 minutes post-injection. Serum GH levels were also reduced as a result of nesfatin-1 administration, by approximately 45% and 55% at 15 and 30 minutes post-injection, respectively. Likewise, in vitro treatment of goldfish dispersed pituitary cells with nesfatin-1 reduced Gh secretion, suggesting that nesfatin-1 acts directly on pituitary somatotrophs to inhibit Gh release. Exposure of cultured liver fragments to nesfatin-1 (0.1, 1 and 10 nmol L-1 ) led to a significant reduction in igf-1 mRNA at 120 minutes and of igf-II mRNA at 30 and 60 minutes post-incubation. Collectively, these results indicate a suppressive role for nesfatin-1 on the goldfish GH/IGF axis. Immunohistochemical studies demonstrated that NUCB2/nesfatin-1-like immunoreactivity, although present in the goldfish pituitary, is not colocalised with GH in goldfish somatotrophs. Thus, nesfatin-1 does not appear to act in an autocrine manner to regulate GH secretion. Taken together, this research found that the pituitary gland is an important source of endogenous NUCB2/nesfatin-1 and also that nesfatin-1 directly suppresses the Gh/IGF axis in goldfish.


Assuntos
Hormônio do Crescimento/antagonistas & inibidores , Nucleobindinas/farmacologia , Somatomedinas/antagonistas & inibidores , Animais , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Carpa Dourada , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Nucleobindinas/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Somatomedinas/metabolismo
18.
Cell Signal ; 66: 109443, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31626955

RESUMO

The ability of phagocytes to recognize, immobilize, and engulf extracellular targets are fundamental immune cell processes that allow for the destruction of a variety of microbial intruders. The phagocytic process depends onsignalling events that initiate dynamic changes in the plasma membrane architecture that are required to accommodate the internalization of large particulate targets. To better understand fundamental molecular mechanisms responsible for facilitating phagocytic receptor-mediated regulation of cytoskeletal networks, our research has focused on investigating representative immunoregulatory proteins from the channel catfish (Ictalurus punctatus) leukocyte immune-type receptor family (IpLITRs). Specifically, we have shown that a specific IpLITR-type can regulate the constitutive deployment of filopodial-like structures to actively capture and secure targets to the phagocyte surface, which is followed by F-actin mediated membrane dynamics that are associated with the formation of phagocytic cup-like structures that precede target engulfment. In the present study, we use confocal imaging to examine the recruitment of mediators of the F-actin cytoskeleton during IpLITR-mediated regulation of membrane dynamics. Our results provide novel details regarding the dynamic recruitment of the signaling effectors Nck and Syk during classical as well as atypical IpLITR-induced phagocytic processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Ictaluridae/imunologia , Proteínas Oncogênicas/imunologia , Fagocitose/imunologia , Receptores Imunológicos/imunologia , Quinase Syk/imunologia , Animais , Linhagem Celular , Fibroblastos , Pseudópodes/imunologia , Ratos
19.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32211894

RESUMO

Phosphatidylinositol (PI) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of the relationship between PI availability and the turnover of subcellular PPIn pools. To address these shortcomings, we established a molecular toolbox for investigations of PI distribution within intact cells by exploiting the properties of a bacterial enzyme, PI-specific PLC (PI-PLC). Using these tools, we find a minor presence of PI in membranes of the ER, as well as a general enrichment within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membrane, but only detect very low steady-state levels of PI within the plasma membrane (PM) and endosomes. Kinetic studies also demonstrate the requirement for sustained PI supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.


Assuntos
Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sistemas do Segundo Mensageiro , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
20.
Mol Cell Endocrinol ; 463: 142-167, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28587765

RESUMO

Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.


Assuntos
Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Modelos Biológicos , Hipófise/metabolismo , Transdução de Sinais , Vertebrados/metabolismo , Animais , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa